leetcode第369周赛

2917. 找出数组中的 K-or 值

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

nums 中的 K-or 是一个满足以下条件的非负整数:

  • 只有在 nums 中,至少存在 k 个元素的第 i 位值为 1 ,那么 K-or 中的第 i 位的值才是 1 。

返回 nums 的 K-or 值。

注意 :对于整数 x ,如果 (2^i AND x) == 2^i ,则 x 中的第 i 位值为 1 ,其中 AND 为按位与运算符。

示例 1:

输入:nums = [7,12,9,8,9,15], k = 4
输出:9
解释:nums[0]、nums[2]、nums[4] 和 nums[5] 的第 0 位的值为 1 。
nums[0] 和 nums[5] 的第 1 位的值为 1 。
nums[0]、nums[1] 和 nums[5] 的第 2 位的值为 1 。
nums[1]、nums[2]、nums[3]、nums[4] 和 nums[5] 的第 3 位的值为 1 。
只有第 0 位和第 3 位满足数组中至少存在 k 个元素在对应位上的值为 1 。因此,答案为 2^0 + 2^3 = 9 。

示例 2:

输入:nums = [2,12,1,11,4,5], k = 6
输出:0
解释:因为 k == 6 == nums.length ,所以数组的 6-or 等于其中所有元素按位与运算的结果。因此,答案为 2 AND 12 AND 1 AND 11 AND 4 AND 5 = 0 。

示例 3:

输入:nums = [10,8,5,9,11,6,8], k = 1
输出:15
解释:因为 k == 1 ,数组的 1-or 等于其中所有元素按位或运算的结果。因此,答案为 10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15 。

提示:

  • 1 <= nums.length <= 50
  • 0 <= nums[i] < 2^31
  • 1 <= k <= nums.length

思路:

简单题目,直接遍历就好了。

最多只有31位,而且数组长度也才50。重点是 (2^i AND x) == 2^i

两层遍历,外层范围[0-31],内层范围[0-n],n是数组的长度。

ac code:

class Solution {public int findKOr(int[] nums, int k) {int ans = 0;for (int j=0;j<31;j++) {int cnt = 0;for (int num : nums) {if ((num & (1 << j)) == (1 << j)) {cnt += 1;}if (cnt >= k) {ans = ans + (1 << j);break;}}}return ans;}
}

2918. 数组的最小相等和

给你两个由正整数和 0 组成的数组 nums1 和 nums2 。

你必须将两个数组中的 所有 0 替换为 严格 正整数,并且满足两个数组中所有元素的和 相等 。

返回 最小 相等和 ,如果无法使两数组相等,则返回 -1 

示例 1:

输入:nums1 = [3,2,0,1,0], nums2 = [6,5,0]
输出:12
解释:可以按下述方式替换数组中的 0 :
- 用 2 和 4 替换 nums1 中的两个 0 。得到 nums1 = [3,2,2,1,4] 。
- 用 1 替换 nums2 中的一个 0 。得到 nums2 = [6,5,1] 。
两个数组的元素和相等,都等于 12 。可以证明这是可以获得的最小相等和。

示例 2:

输入:nums1 = [2,0,2,0], nums2 = [1,4]
输出:-1
解释:无法使两个数组的和相等。

提示:

  • 1 <= nums1.length, nums2.length <= 10^5
  • 0 <= nums1[i], nums2[i] <= 10^6

思路:

直接模拟。答案分几种情况,只要捋清楚即可。

1、nums1不存在0:

  1)nums2不存在0:

       value1(nums1的sum值,同下)!= value2(nums2的sum值,同下)那么就return -1

  2)nums2存在0:

      value1 <= (value2+cnt2(代表nums2种0的个数,同下)):因为0是严格替换成了正整数,那么最小也是1,已经比value1还要大了,再加上正整数,不可能使得value2变小,所以,return -1 ;

     value1 > value 2:因为可以换成任意正整数,所以,value2肯定可以变大成任意值。那么最小的话,肯定就是value1,所以return value1即可。

2、nums1存在0:

  1)nums2 不存在0:

      同理,(value1 + cnt1) >= value2 即可return -1;

      value1 < value2,则 return value2

  2)nums2 存在0:

      因为0最小也是换成1,所以value的范围其实是可以确定的。例如nums1值的范围是[value1 + cnt1(nums1存在0的个数), 正无穷)

      那么nums2也是同理。所以,返回的值取范围交集即可。return Math.max(value1+cnt1, value2+cnt2),为什么是max呢?因为交集!!! 不懂得可以画个图,或者举几个例子。

捋清楚之后,按照分类写清楚就行( 之前没捋清楚还wa了一次。。。)

具体细节,看代码

ac code

class Solution {public long minSum(int[] nums1, int[] nums2) {long value1 = 0; // nums1的sumlong value2 = 0;  // nums2的sumint cnt1 = 0;  // num1的0的个数int cnt2 = 0;   // num2的0的个数for (int num : nums1) {if (num == 0) {cnt1 += 1;}value1 += num;}for (int num : nums2) {if (num == 0) {cnt2 += 1;}value2 += num;}// 需要判断value1 如果小于 value2 + cnt2,那么无论如何都不可能if (cnt1 == 0 && value1 <= (value2+cnt2)) {if (cnt2 == 0 && value1 == value2) {return value1;} else if (value1 == (value2+cnt2)) {return value1;}return -1;}if (cnt2 == 0 && value2 <= (value1+cnt1)) {if (cnt1 == 0 && value1 == value2) {return value1;} else if (value2 == (value1+cnt1)) {return value2;}return -1;}if (cnt1 == 0) {return value1;}if (cnt2 == 0) {return value2;}return Math.max(value1+cnt1, value2+cnt2); }
}

2919. 使数组变美的最小增量运算数

给你一个下标从 0 开始、长度为 n 的整数数组 nums ,和一个整数 k 。

你可以执行下述 递增 运算 任意 次(可以是 0 次):

  • 从范围 [0, n - 1] 中选择一个下标 i ,并将 nums[i] 的值加 1 。

如果数组中任何长度 大于或等于 3 的子数组,其 最大 元素都大于或等于 k ,则认为数组是一个 美丽数组 。

以整数形式返回使数组变为 美丽数组 需要执行的 最小 递增运算数。

子数组是数组中的一个连续 非空 元素序列。

示例 1:

输入:nums = [2,3,0,0,2], k = 4
输出:3
解释:可以执行下述递增运算,使 nums 变为美丽数组:
选择下标 i = 1 ,并且将 nums[1] 的值加 1 -> [2,4,0,0,2] 。
选择下标 i = 4 ,并且将 nums[4] 的值加 1 -> [2,4,0,0,3] 。
选择下标 i = 4 ,并且将 nums[4] 的值加 1 -> [2,4,0,0,4] 。
长度大于或等于 3 的子数组为 [2,4,0], [4,0,0], [0,0,4], [2,4,0,0], [4,0,0,4], [2,4,0,0,4] 。
在所有子数组中,最大元素都等于 k = 4 ,所以 nums 现在是美丽数组。
可以证明无法用少于 3 次递增运算使 nums 变为美丽数组。
因此,答案为 3 。

示例 2:

输入:nums = [0,1,3,3], k = 5
输出:2
解释:可以执行下述递增运算,使 nums 变为美丽数组:
选择下标 i = 2 ,并且将 nums[2] 的值加 1 -> [0,1,4,3] 。
选择下标 i = 2 ,并且将 nums[2] 的值加 1 -> [0,1,5,3] 。
长度大于或等于 3 的子数组为 [0,1,5]、[1,5,3]、[0,1,5,3] 。
在所有子数组中,最大元素都等于 k = 5 ,所以 nums 现在是美丽数组。
可以证明无法用少于 2 次递增运算使 nums 变为美丽数组。 
因此,答案为 2 。

示例 3:

输入:nums = [1,1,2], k = 1
输出:0
解释:在这个示例中,只有一个长度大于或等于 3 的子数组 [1,1,2] 。
其最大元素 2 已经大于 k = 1 ,所以无需执行任何增量运算。
因此,答案为 0 。

提示:

  • 3 <= n == nums.length <= 10^5
  • 0 <= nums[i] <= 10^9
  • 0 <= k <= 10^9

思路:

挺有意思的一道题目,算是益智题了。一开始想到的是滑动窗口,最小长度3,然后将窗口内最大值进行增大到k值,后来发现不对,因为窗口内最大值并不一定是最优的,那么就会希望有一个后悔的操作,比如增大了a,但是发现不是最优的,想要增大相邻的b。如何“后悔”增大某个数字?

举个例子:

[43,31,14,4]

73

如果按照原本的想法,增大窗口内最大值,窗口长度是3。那么应该增大43,然后窗口向右滑动后,没有满足条件的k值,则增大31到k值。这样发现,一共花费了30 + 42 = 62。

但是如果我们仅仅只增大31呢? 那么其实就只需要花费42即可。

此时,我们可以考虑下,如果我们选择了43的时候,如果后续需要后悔,那么对于相邻的31是不是需要进行变大操作。

一步步来看:([xxx]表示窗口)

[43,31,14],4

经过操作 假设先按照之前的贪心的想法,先把43进行变动为

[73,31,14],4

此时我们已经花费了30了,如果只是单纯将31 -> 73 是需要42,目前已经花费了30,那么就还需要12,所以,我们可以将31同步转换为61,同理14同步转换为44,即

[73,61,44],4

所以在下一个窗口后那么就是:

73,[61,44,4]

这个时候我们就只需要花费12 就可以满足条件,这样相当于就是执行了后悔的操作。是不是很巧妙的一个办法。

而且,我们还需要注意,窗口尽可能往后取值。

具体实现细节可以看看代码。

ac code

class Solution {public long minIncrementOperations(int[] nums, int k) {int first = nums[0];int second = nums[1];int third = nums[2];int n = nums.length;long ans = 0;// 窗口长度为3for (int i=3;i<=n;i++) {// 如果没有满足条件的值才需要进行变换if (first < k && second < k && third < k) {// 找到最大值int tmp = Math.max(first, Math.max(second, third));ans += (k - tmp); // 计算代价if (third == tmp) { // 如果是最后一个的话,直接变就行,因为它在窗口待最久third = k;} else if (second == tmp) { // 如果是第二个,只需要把后面的加上后悔操作即可,毕竟第一个马上要出窗口了second = k;third += (k - tmp);} else { // 同上first = k;second += (k - tmp);third += (k - tmp);}}// 窗口向右滑动if (i < n) {first = second;second = third;third = nums[i];}}return ans;}
}

2920. 收集所有金币可获得的最大积分

节点 0 处现有一棵由 n 个节点组成的无向树,节点编号从 0 到 n - 1 。给你一个长度为 n - 1 的二维 整数 数组 edges ,其中 edges[i] = [ai, bi] 表示在树上的节点 ai 和 bi 之间存在一条边。另给你一个下标从 0 开始、长度为 n 的数组 coins 和一个整数 k ,其中 coins[i] 表示节点 i 处的金币数量。

从根节点开始,你必须收集所有金币。要想收集节点上的金币,必须先收集该节点的祖先节点上的金币。

节点 i 上的金币可以用下述方法之一进行收集:

  • 收集所有金币,得到共计 coins[i] - k 点积分。如果 coins[i] - k 是负数,你将会失去 abs(coins[i] - k) 点积分。
  • 收集所有金币,得到共计 floor(coins[i] / 2) 点积分。如果采用这种方法,节点 i 子树中所有节点 j 的金币数 coins[j] 将会减少至 floor(coins[j] / 2) 。

返回收集 所有 树节点的金币之后可以获得的最大积分。

 

示例 1:

输入:edges = [[0,1],[1,2],[2,3]], coins = [10,10,3,3], k = 5
输出:11                        
解释:
使用第一种方法收集节点 0 上的所有金币。总积分 = 10 - 5 = 5 。
使用第一种方法收集节点 1 上的所有金币。总积分 = 5 + (10 - 5) = 10 。
使用第二种方法收集节点 2 上的所有金币。所以节点 3 上的金币将会变为 floor(3 / 2) = 1 ,总积分 = 10 + floor(3 / 2) = 11 。
使用第二种方法收集节点 3 上的所有金币。总积分 =  11 + floor(1 / 2) = 11.
可以证明收集所有节点上的金币能获得的最大积分是 11 。 

示例 2:

输入:edges = [[0,1],[0,2]], coins = [8,4,4], k = 0
输出:16
解释:
使用第一种方法收集所有节点上的金币,因此,总积分 = (8 - 0) + (4 - 0) + (4 - 0) = 16 。

 

提示:

  • n == coins.length
  • 2 <= n <= 10^5
  • 0 <= coins[i] <= 10^4
  • edges.length == n - 1
  • 0 <= edges[i][0], edges[i][1] < n
  • 0 <= k <= 10^4

思路:

树上dp,不太会。。。 放下别人的题解。。。

把 floor(coins[i] / 2) 看成右移操作。

一个数最多右移多少次,就变成 000 了?在本题的数据范围下,这至多是 141414 次。

同时,右移操作是可以叠加的,我们可以记录子树中的节点值右移了多少次。

所以可以定义 dfs(i,j)\textit{dfs}(i,j)dfs(i,j) 表示子树 iii 在已经右移 jjj 次的前提下,最多可以得到多少积分。

用「选或不选」来思考,即是否右移:

不右移:答案为 (coins[i]>>j)−k(\textit{coins}[i]>>j)-k(coins[i]>>j)−k 加上每个子树 ch\textit{ch}ch 的 dfs(ch,j)\textit{dfs}(ch,j)dfs(ch,j)。
右移:答案为 coins[i]>>(j+1)\textit{coins}[i]>>(j+1)coins[i]>>(j+1) 加上每个子树 ch\textit{ch}ch 的 dfs(ch,j+1)\textit{dfs}(ch,j+1)dfs(ch,j+1)。
这两种情况取最大值。

作者:灵茶山艾府
 

class Solution {public int maximumPoints(int[][] edges, int[] coins, int k) {int n = coins.length;List<Integer>[] g = new ArrayList[n];Arrays.setAll(g, e -> new ArrayList<>());for (int[] e : edges) {int x = e[0], y = e[1];g[x].add(y);g[y].add(x);}int[][] memo = new int[n][14];for (int[] m : memo) {Arrays.fill(m, -1); // -1 表示没有计算过}return dfs(0, 0, -1, memo, g, coins, k);}private int dfs(int i, int j, int fa, int[][] memo, List<Integer>[] g, int[] coins, int k) {if (memo[i][j] != -1) { // 之前计算过return memo[i][j];}int res1 = (coins[i] >> j) - k;int res2 = coins[i] >> (j + 1);for (int ch : g[i]) {if (ch == fa) continue;res1 += dfs(ch, j, i, memo, g, coins, k); // 不右移if (j < 13) { // j+1 >= 14 相当于 res2 += 0,无需递归res2 += dfs(ch, j + 1, i, memo, g, coins, k); // 右移}}return memo[i][j] = Math.max(res1, res2); // 记忆化}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125098.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4.1 Bloom算法

一、Bloom算法介绍 1.具体效果 2.实现思路 先将原图按照一定阈值提取较亮的区域模糊提取出的图像将模糊过的图像与原图混合 3.HDR与LDR LDR&#xff08;Low Dynamic Range&#xff0c;低动态范围&#xff09; JPG、PNG格式图片RGB范围在[0,1]之间 HDR&#xff08;High Dynam…

计算机网络第3章-TCP协议(2)

TCP拥塞控制 TCP拥塞控制的三种方式&#xff1a; 慢启动、拥塞避免、快速恢复 慢启动 当一条TCP连接开始时&#xff0c;cwnd的值是一个很小的MSS值&#xff0c;这使得初始发送速率大约为MSS/RTT。 在慢启动状态&#xff0c;cwnd的值以1个MSS开始并且每当传输的报文段首次被…

使用Hystrix实现请求合并,降低服务器并发压力

1.引入Hystrix <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-hystrix</artifactId></dependency> 2.在启动类上开启Hystrix功能 EnableHystrix 3.请求合并实现代码 import com…

解决Linux Debian12系统中安装VirtualBox虚拟机无法使用USB设备的问题

Debian12系统中安装VirtualBox&#xff0c;再VirtualBox虚拟机中无法使用 USB设备。如下图所示&#xff1a; 解决方法如下&#xff1a; 1.安装 Virtualbox增强功能。如下图所示&#xff1a; 2.添加相关用户、用户组&#xff08; Virtualbox 装完成后会有 vboxusers 和 vboxs…

Linux 网络驱动实验(PHY芯片LAN8720)

目录 嵌入式网络简介嵌入式下的网络硬件接口MII/RMII 接口MDIO 接口RJ45 接口I.MX6ULL ENET 接口简介 PHY 芯片详解PHY 基础知识简介LAN8720A 详解SR8201F 详解 Linux 内核网络驱动框架net_device 结构体net_device_ops 结构体sk_buff 结构体网络NAPI 处理机制 I.MX6ULL 网络驱…

SQL SERVER 表分区

1. 概要说明 SQL SERVER的表分区功能是为了将一个大表&#xff08;表中含有非常多条数据&#xff09;的数据根据某条件&#xff08;仅限该表的主键&#xff09;拆分成多个文件存放&#xff0c;以提高查询数据时的效率。创建表分区的主要步骤是 1、确定需要以哪一个字段作为分…

vite vue3 ts 使用sass 设置样式变量 和重置默认样式

1.安装scss 样式支持依赖 yarn add -D sass 2.使用sass <div><!-- 测试使用sass --><h1>测试使用sass</h1> </div><style scope lang"scss"> div {h1 {color: red;} } </style> 效果&#xff1a; 3.通过npm下载并复制…

Spring Cloud之Gateway网关学习【详细】

目录 统一网关Gateway 网关的实现 搭建网关 编写配置文件 路由断言工程 路由的过滤器 全局过滤器 网关过滤器执行顺序 网关的cors跨域配置 问题及解决 统一网关Gateway 网关的实现 SpringCloud中存在两种网关 gateway&#xff1a;基于Spring5中提供的WebFlux实现&a…

Unity 粒子特效-第三集-星星闪烁特效

一、特效预览 二、制作原理 星星素材资源 链接&#xff1a;https://pan.baidu.com/s/17D-9sC-ErtqmUxl81Ln1Mw?pwdndm9 提取码&#xff1a;ndm9 1.素材介绍 仔细看&#xff0c;我们的粒子贴图是&#xff08;如下&#xff09;&#xff0c;一颗星星 2.步骤介绍 1.星星动画的…

【如何写论文】硕博学位论文的结构框架、过程与大纲分析

硕士论文可以说是毕业前最重要的一部分&#xff0c;也可以说是展示和检验你3年研究生学习的成果的一个考试。硕士论文答辩和检验合格&#xff0c;才能够顺利拿到毕业生和学位证&#xff0c;可见其重要性。 目录 一、基础框架1.1、摘要&#xff08;Abstract&#xff09;1.2、绪论…

【多线程面试题十五】、synchronized可以修饰静态方法和静态代码块吗?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;synchronized可以修饰静…

灯串上亚马逊加拿大合规标准CSA认证如何办理?

灯串 灯串和配件都是插头连接的便携式、临时性商品&#xff0c;最大额定输入电压为 120 伏。 本政策适用于季节性照明、装饰性灯具以及灯串。 亚马逊灯串政策 根据亚马逊的要求&#xff0c;所有季节性和装饰性灯串均应经过检测&#xff0c;并且遵守下列法规、标准和要求&…

AUTOSAR CAN协议栈架构总览介绍

Classic AUTOSAR层级架构简介 如下图是Classic AUTOSAR层级架构图,每个层主要功能如下 微控制器抽象层:使上层软件和微处理器型号无关,包含MCU中内部外设的驱动以及MCU内存映射的外部设备的驱动ECU抽象层:使上层软件和ECU硬件设计无关,包含ECU板上外部设备的驱动以及内部…

Hi3516DV500部署paddle版型分析模型记录

原版模型测试并导出onnx paddle 版面分析-> https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7/ppstructure/layout/README_ch.md 测试 python3 deploy/python/infer.py \ --model_dirmodel/picodet_lcnet_x1_0_fgd_layout_cdla_infer/ \ --image_fil…

Apache Dolphinscheduler如何不重启解决Master服务死循环

个人建议 Apache Dolphinscheduler作为一个开源的调度平台&#xff0c;目前已经更新到了3.X版本&#xff0c;4.0版本也已经呼之欲出。3.0版本作为尝鲜版本&#xff0c;新添加了许多的功能&#xff0c;同时也存在非常多的隐患&#xff0c;本人使用3.0版本作为生产调度也踩了很多…

Android开发知识学习——TCP / IP 协议族

文章目录 学习资源来自&#xff1a;扔物线TCP / IP 协议族TCP连接TCP 连接的建立与关闭TCP 连接的建立为什么要三次握手&#xff1f; TCP 连接的关闭为什么要四次挥手&#xff1f; 为什么要⻓连接&#xff1f; 常见面试题课后题 学习资源来自&#xff1a;扔物线 TCP / IP 协议…

OpenCV学习(一)——图像读取

1. 图像入门 读取图像显示图像写入图像 import cv2# 读取图像 img cv2.imread(lena.jpg) print(img.shape)# 显示图像 cv2.imshow(image, img) cv2.waitKey(0) cv2.destroyAllWindows()# 写入图像 cv2.imwrite(image.jpg, img)1.1 读取图像 读取图像cv.imread(filename, fl…

人工智能-softmax回归

回归可以用于预测多少的问题。 比如预测房屋被售出价格&#xff0c;或者棒球队可能获得的胜场数&#xff0c;又或者患者住院的天数。 事实上&#xff0c;我们也对分类问题感兴趣&#xff1a;不是问“多少”&#xff0c;而是问“哪一个”&#xff1a; 某个电子邮件是否属于垃圾…

最新版本QGIS 开始支持cesium 3D TILE 数据源了

最新版本QGIS 也开始支持3D TILE 数据源了!加载和运行速度也是慢&#xff0c;不过都这样&#xff0c;也不是qgis的问题!这东西对网络和性能要求比较高!据说这是cesium社区提供基金让qgis团队开发的&#xff0c;cesium社区真是很有钱啊&#x1f601;&#xff0c;不过也不奇怪&am…