MA 均线时最基本的技术指标,也是最简单,最不常用的(通常使用EMA、SMA)。
以下用两种不同的计算方法和两种不同的画图方法进行展示和说明。
MA 均线指标公式
MA (N)=(C1 +C2 +C3 +…+C N )/N
目录
- 方式一
- 1.SQL 直接查询均值
- 2.使用 pyplot 进行绘图
- 3.使用 Grafana 绘图
- 方式二
- 1.使用 Python 计算 MA
- 2.使用 pyplot 进行绘图
- 高能预警
- 题外话
方式一
1.SQL 直接查询均值
TDengine 提供了很多时间相关函数,其中有个窗口函数 interval
可以进行滑动时间窗口的运算。函数说明见官方文档。
直接查询 2022-08-01 到 2022-10-01 时间段的 5 日 MA,SQL 如下:
selectma
from(select_wend as ts,avg(close) as mafrom(select_wstart,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) // 获取每日最后一分钟的收盘价作为当日收盘价) interval(5d) sliding(1d) //计算5日的收盘价平均值,滑动窗口为1天。)
wherets >= "2022-08-01" and ts <= "2022-10-01" //选取指定时间范围内数据
数据结构见之前的文章《[量化投资-学习笔记001]Python+TDengine从零开始搭建量化分析平台-数据存储》
Python 代码如下:
def request_get(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")datalist= []for i in range(len(data)):datalist.append(float(data[i][0]))return datalistdef get_ma(sql):ma = []rt = request_post(tdurl,sql,username,password)if check_return(rt) == 'error':print(rt)else:ma = request_get(rt)return ma
2.使用 pyplot 进行绘图
if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.legend()plt.grid()plt.show()
3.使用 Grafana 绘图
Grafana 可以直接访问 TDengine 数据库,我们直接添加一张时间序列图即可。
SQL 如下:
select ts,ma from (select _wend as ts,avg(close) as ma from (select _wstart,last(close) as close from trade_data_a.tdata where fcode="000001" interval(1d)) interval(5d) sliding(1d) )where ts>=$from and ts<=$to
注意:
Grafana 中的时间序列图必须带上时间。
时间范围可以使用 Grafana 自带函数 $from 和 $to,方便图形的缩放。
方式二
1.使用 Python 计算 MA
通过查询 TDengine 数据库获取原数据,然后使用 Python 计算 MA。
原始数据获取:
selectclose
from(select_wstart as ts,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) //获取每日收盘价)
wherets >= "2022-08-01" and ts <= "2022-10-01" //获取指定日期收盘价
这里计算 MA 时取巧,使用了 numpy 的均值函数。
def calc_ma(days,ma):ma_n = []days = days-1for i in range(len(ma)):if i >= days:ma_n.append(np.mean(ma[i-days:i+1]))else:if i == 0:ma_n.append(ma[i])else:ma_n.append(np.mean(ma[:i]))return ma_n
注意:
以上对初始的几个值按实际个数进行了平均,因此结果与方式一存在偏差。
2.使用 pyplot 进行绘图
if __name__ == '__main__':ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()
高能预警
从图形上来看,不管哪种方式,展示出的图形都相差不大,但为了对比,我们讲方式一和方式二的图形放到一起进行对比。
if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()
WTF!!
大坑出现了!!
为何图形形状差不多,但是数据却对不上??
问题就出在 TDengine 的滑动时间窗口函数上面,这个函数是按照时间维度顺序滑动的,默认时间是连续的。
但是
交易时间是不连续的!
交易时间是不连续的!
交易时间是不连续的!
这就造成了方式一中不仅相同时间段的数据条数多了,数值计算也错了。
所以,TDengine 的时间窗口函数对于这种不连续的时间真是无能为力,只能老老实实自己进行计算了。
但如果只是想看看趋势什么的,不考虑精确性,用 TDengine+Grafana 还是挺方便的。
题外话
MA 是技术分析指标。对于技术分析有时模糊的准确比精准的错误更重要。
我之前有个课后作业对技术分析的多解性做了说明,有兴趣的同学可以看两眼:https://www.zhihu.com/question/34886985/answer/3264087568
技术分析除了具有多解性,还具有反身性,这就造成了技术分析的误差非常大,而且越追求精准,误差越大。