【排序算法】 归并排序详解!分治思想!

在这里插入图片描述

🎥 屿小夏 : 个人主页
🔥个人专栏 : 算法—排序篇
🌄 莫道桑榆晚,为霞尚满天!

文章目录

  • 📑前言
  • 🌤️归并排序的思想
    • ☁️基本思想
    • ☁️归并的思想实现
    • ☁️分治法
  • 🌤️归并排序的实现
    • ☁️核心操作步骤
    • ☁️递归版归并实现
      • ⭐代码实现详解:
    • ☁️非递归版归并实现
      • ⭐代码实现详解:
  • 🌤️归并排序特性总结
  • 🌤️全篇总结

📑前言

​ 什么是归并?通过归并排序就能让数据有序?分治法是怎么在归并排序上应用的?本文将对归并排序进行细致入微的讲解,庖丁解牛般让你彻底明白归并排序!

🌤️归并排序的思想

☁️基本思想

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

☁️归并的思想实现

​ 将两个有序数组合并成一个有序数组的操作。在归并排序中,通过不断地将数组分成两半,分别对每一半进行排序,然后将排好序的两个子数组合并成一个有序数组,最终得到整个数组有序的结果。

☁️分治法

​ 分治法在归并排序中的应用是将问题分解成更小的子问题,然后分别解决这些子问题,最后将子问题的解合并起来得到原问题的解。具体来说,归并排序的分治法应用如下:

  1. 分解:将待排序的数组分成两个子数组,分别为左子数组和右子数组。
  2. 解决:递归地对左子数组和右子数组进行归并排序。
  3. 合并:将排好序的左子数组和右子数组合并成一个有序数组。

🌤️归并排序的实现

☁️核心操作步骤

静图全步骤概览:

在这里插入图片描述

动图一步步的逻辑实现:

在这里插入图片描述

☁️递归版归并实现

//归并
void _MergeSort(int* a, int* tmp, int begin, int end)
{if (end <= begin){return;}int mid = (begin + end) / 2;_MergeSort(a, tmp, begin, mid);_MergeSort(a, tmp, mid + 1, end);// a->[begin, mid][mid+1, end]->tmp//归并int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int index = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] <= a[begin2]){tmp[index++] = a[begin1++];}else{tmp[index++] = a[begin2++];}}while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}memcpy(a + begin, tmp + begin, (end - begin + 1) * sizeof(int));
}
//归并(递归版)
void MergeSort(int* a, int n)
{int* tmp = malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");exit(-1);}_MergeSort(a, tmp, 0, n - 1);free(tmp);
}

​ 归并需要开一个同样大的tmp数组来存放数据,相当于是拿空间来换时间了.

⭐代码实现详解:

  1. 首先,将整个序列分为两部分,分别递归调用_MergeSort函数对左右两部分进行排序。
  2. 在_MergeSort函数中,首先判断递归终止条件,如果end小于等于begin,则表示当前子序列只有一个元素或者为空,无需排序,直接返回。
  3. 然后,计算中间位置mid,并分别递归调用_MergeSort函数对左右两部分进行排序。
  4. 接下来,进行归并操作。首先,设置四个指针begin1、end1、begin2、end2分别指向左右两部分的起始和结束位置,以及一个指针index指向当前归并结果的位置。
  5. 然后,使用两个循环比较左右两部分的元素大小,并将较小的元素放入tmp数组中,同时移动相应的指针。
  6. 最后,将剩余的元素复制到tmp数组中。
  7. 最后,将tmp数组中的元素复制回原数组a中,完成归并排序。

☁️非递归版归并实现

​ 非递归版是在递归上进行了修改,将其递归改为了循环。

//归并(非递归版)
void _MergeSortNotR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");exit(-1);}int gap = 1;while (gap < n){for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;if (begin2 >= n){break;}if (end2 >= n){end2 = n - 1;}int index = i;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] <= a[begin2]){tmp[index++] = a[begin1++];}else{tmp[index++] = a[begin2++];}}while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}memcpy(a+i, tmp+i, (end2-i+1) * sizeof(int));}gap *= 2;}free(tmp);
}

⭐代码实现详解:

  1. 分配一个临时数组tmp,用于存储归并结果。

  2. 设置一个变量gap为1,表示归并的间隔大小。

  3. 接下来,循环执行以下操作,直到gap大于等于n:

    1. 遍历整个数组,每次取两个相邻的子序列进行归并。
    2. 计算左右两个子序列的起始和结束位置。
    3. 判断右子序列的结束位置是否超过了数组的长度,如果超过,则将结束位置设置为数组的最后一个元素的下标。
    4. 使用两个指针begin1和begin2分别指向左右两个子序列的起始位置,使用指针end1和end2分别指向左右两个子序列的结束位置。
    5. 使用一个指针index指向当前归并结果的位置。
    6. 使用一个循环,比较左右两个子序列的元素大小,并将较小的元素放入临时数组tmp中,同时移动相应的指针。
    7. 如果左子序列还有剩余元素,则将剩余元素复制到tmp数组中。
    8. 如果右子序列还有剩余元素,则将剩余元素复制到tmp数组中。
    9. 将tmp数组中的元素复制回原数组a中。
    10. 将gap乘以2,进行下一轮归并。
  4. 最后,释放临时数组tmp的内存空间。

🌤️归并排序特性总结

  1. 稳定性:归并排序是一种稳定的排序算法,即相等元素的相对顺序在排序后不会改变。
  2. 时间复杂度:归并排序的时间复杂度是O(nlogn),其中n是待排序序列的长度。这是由于归并排序的核心操作是将序列分成两个子序列,然后分别进行排序,再将排序好的子序列合并,而分割和合并操作都需要O(logn)的时间,所以总的时间复杂度是O(nlogn)。
  3. 空间复杂度:归并排序的空间复杂度是O(n),其中n是待排序序列的长度。这是由于归并排序需要一个与待排序序列相同大小的额外空间来存储临时的合并结果。
  4. 非原地排序:归并排序不是原地排序算法,即它需要额外的空间来存储临时的合并结果。这是因为在合并操作中,需要同时访问两个子序列的元素,并将它们按照顺序合并到一个新的序列中。
  5. 递归实现:归并排序通常使用递归的方式来实现,即将待排序序列不断分割成更小的子序列,直到子序列的长度为1,然后再将这些子序列按照顺序合并成一个有序的序列。递归实现的归并排序代码简洁易懂,但是由于递归调用的开销比较大,所以在实际应用中可能会使用迭代的方式来实现归并排序。
  6. 适用性:归并排序适用于各种数据规模的排序,而且对于大规模数据的排序效果较好。它的时间复杂度稳定在O(nlogn),不会因为数据规模的增大而导致时间复杂度的增加。此外,归并排序还适用于外部排序,即对于无法一次性加载到内存的大规模数据进行排序。

🌤️全篇总结

​ 经过对归并排序的思想,特性,代码实现这些细致入微的讲解,相信聪明的你肯定已经学会了叭😊😊!

☁️ 好了,由于篇幅有限,本章只是对归并进行了深度解刨,后序会出更多的排序算法哦!
看到这里了希望给博主留个:
👍 点赞🌟收藏 ⭐️ 关注!
💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
拜托拜托这个真的很重要!
你们的点赞就是博主更新最大的动力!
有问题可以评论或者私信呢秒回哦。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/123556.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IOC课程整理-20 Spring 应用上下文生命周期

0.目录 1. Spring 应用上下文启动准备阶段 2. BeanFactory 创建阶段 3. BeanFactory 准备阶段 4. BeanFactory 后置处理阶段 5. BeanFactory 注册 BeanPostProcessor 阶段 6. 初始化內建 Bean&#xff1a;MessageSource 7. 初始化內建 Bean&#xff1a;Spring 事件广播器…

计算机毕业设计选题推荐-戏曲文化苑微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

Springboot 使用JavaMailSender发送邮件 + Excel附件

目录 1.生成Excel表格 1.依赖设置 2.代码&#xff1a; 2.邮件发送 1.邮件发送功能实现-带附件 2.踩过的坑 1.附件名中文乱码问题 3.参考文章&#xff1a; 需求描述&#xff1a;项目审批完毕后&#xff0c;需要发送邮件通知相关人员&#xff0c;并且要附带数据库表生成的…

Linux C/C++ 实现网络流量分析(性能工具)

网络流量分析的原理基于对数据包的捕获、解析和统计分析&#xff0c;通过对网络流量的细致观察和分析&#xff0c;帮助管理员了解和优化网络的性能、提高网络安全性&#xff0c;并快速排查和解决网络故障和问题。 Linux中的网络流量常见类型 在Linux中&#xff0c;网络流量可以…

校园物业报修小程序开发笔记一

背景 校园规模和复杂性&#xff1a; 大型学校和校园通常拥有众多的建筑物、设施和设备&#xff0c;需要有效的维护和报修系统&#xff0c;以满足学生、教职员工和校园管理人员的需求。 学生和员工需求&#xff1a; 学生和员工在校园内可能遇到各种维修问题&#xff0c;如故障的…

ESP8266,手机与电脑之间的TCP通讯

电脑端运行通讯猫调试助手,作为服务端: 电脑端 电脑的IP地址是: 192.168.2.232 手机与电脑之间的TCP通讯 手机端运行网络调试精灵,作为客户端: 手机端 如果从手机端点击"发送"按钮,则也会将"ghhh东方红广场"几个字发送到电脑上(服务端). ESP8266作为客户…

elasticsearch一些重要的配置参数

先看一下官网给我们提供的全部的参数配置项 官网地址 官方文档链接&#xff1a;注意版本是8.1Configuring Elasticsearch | Elasticsearch Guide [8.1] | Elastic​编辑https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html 重要&#xff08;基本…

【2023Mathorcup大数据】B题 电商零售商家需求预测及库存优化问题 python代码解析

【2023Mathorcup大数据】B题 电商零售商家需求预测及库存优化问题 python代码解析 1 题目 2023 年MathorCup 高校数学建模挑战赛——大数据竞赛赛道B&#xff1a;电商零售商家需求预测及库存优化问题电商平台存在着上千个商家&#xff0c;他们会将商品货物放在电商配套的仓库…

通道洗牌的思想神了

大家好啊&#xff0c;我是董董灿。 昨天写了一篇关于分组卷积的文章&#xff1a;分组卷积的思想神了&#xff0c;然后有同学希望多了解下通道洗牌。 我个人感觉&#xff0c;通道洗牌这个算法&#xff0c;或者说这个思想&#xff0c;可以称之为小而精&#xff0c;并且是实际解…

rust 创建多线程web server

创建一个 http server&#xff0c;处理 http 请求。 创建一个单线程的 web 服务 web server 中主要的两个协议是 http 和 tcp。tcp 是底层协议&#xff0c;http 是构建在 tcp 之上的。 通过std::net库创建一个 tcp 连接的监听对象&#xff0c;监听地址为127.0.0.1:8080. us…

NEFU数字图像处理(三)图像分割

一、图像分割的基本概念 1.1专有名词 前景和背景 在图像分割中&#xff0c;我们通常需要将图像分为前景和背景两个部分。前景是指图像中我们感兴趣、要分割出来的部分&#xff0c;背景是指和前景不相关的部分。例如&#xff0c;对于一张人物照片&#xff0c;人物就是前景&…

python把ChestX-Det-Dataset的json样本转为COCO数据集的json格式

ChestX-Det-Dataset数据集网址&#xff1a;https://github.com/Deepwise-AILab/ChestX-Det-Dataset/tree/main 数据集JSON内容&#xff1a; [{"file_name": "36199.png","syms": [],"boxes": [],"polygons": []},{"f…

Hadoop学习总结(搭建Hadoop集群(伪分布式模式))

如果前面有搭建过Hadoop集群完全分布式模式&#xff0c;现在搭建Hadoop伪分布式模式可以选择直接克隆完全分布式模式中的主节点(hadoop001)。以下是在搭建过完全分布式模式下的Hadoop集群的情况进行 伪分布式模式下的Hadoop功能与完全分布式模式下的Hadoop功能相同。 一、克隆…

DAY38 动态规划 + 509. 斐波那契数 + 70. 爬楼梯 + 746. 使用最小花费爬楼梯

动态规划理论 动态规划&#xff0c;Dynamic Programming&#xff0c; DP&#xff0c; 如果某一问题有很多重叠子问题&#xff0c;使用动态规划是最有效的。 所以动态规划中每一个状态一定是由上一个状态推导出来的&#xff0c;这一点就区分于贪心&#xff0c;贪心没有状态推导…

buuctf_练[GYCTF2020]FlaskApp

[GYCTF2020]FlaskApp 文章目录 [GYCTF2020]FlaskApp常用绕过方法掌握知识解题思路解题一 -- 计算pin码解题二 -- 拼接绕过 执行命令 关键paylaod 常用绕过方法 ssti详解与例题以及绕过payload大全_ssti绕过空格_HoAd’s blog的博客-CSDN博客 CTF 对SSTI的一些总结 - FreeBuf网…

Spark UI中Shuffle dataSize 和shuffle bytes written 指标区别

背景 本文基于Spark 3.1.1 目前在做一些知识回顾的时候&#xff0c;发现了一些很有意思的事情&#xff0c;就是Spark UI中ShuffleExchangeExec 的dataSize和shuffle bytes written指标是不一样的&#xff0c; 那么在AQE阶段的时候&#xff0c;是以哪个指标来作为每个Task分区大…

了解单域名证书和通配符证书的区别,选择合适的SSL证书解决方案

随着互联网的不断发展&#xff0c;网站安全性问题一直备受关注&#xff0c;在保护网站数据安全的过程中&#xff0c;SSL证书一直发挥着至关重要的作用。而在选择SSL证书时&#xff0c;单域名证书和通配符证书是两种常见的选择。本文将详细介绍单域名证书和通配符证书的区别&…

Cocos Creator 中使用装饰器进行自动绑定

推荐一个偷懒的方式&#xff0c;使用装饰器自动绑定节点到脚本的属性 背景 用 Cocos Creator 写脚本组件的时候&#xff0c;有时需要场景中一个节点作为这个脚本的属性值。 按照官方文档推荐的方法&#xff0c;需要以下两步 添加一个 property 属性&#xff0c;在场景中拖入这个…

案例分析大汇总

案例分析心得 2018-2022年的案例分析考试内容汇总&#xff08;近五年&#xff09; 架构设计题型 软件系统建模 数据库 Web 系统设计 2018年 胖/瘦客户端 C/S 架构非功能性需求 数据流图DFDE-R图Essential Use Cases(抽象用例)&#xff0c;Real Use Cases(基础用例)信息工…

双目视觉计算三维坐标

一、原理 双目视觉的基本原理&#xff0c;以及公式推导&#xff0c;我参考的b站上的视频&#xff0c;链接如下&#xff1a; 2-线性相机模型-Linear Camera Model-Camera Calibration_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Q34y1n7ot/?p2&spm_id_from333.…