【考研数学】数学“背诵”手册 | 需要记忆且容易遗忘的知识点

文章目录

  • 引言
  • 一、高数
    • 常见泰勒展开
    • n n n 阶导数公式
    • 多元微分函数连续、可微、连续可偏导之间的关系
    • 多元函数极值
      • 无条件极值
      • 条件极值
    • 三角函数的积分性质
      • 华里士公式( “点火”公式 )
      • 特殊性质
    • 原函数与被积函数的奇偶性结论
    • 球坐标变换公式
  • 二、线代
    • 施密特正交化
    • 分块矩阵
    • 转置、逆、伴随之间的运算
    • 关于秩
      • 定义
      • 性质
  • 三、概统
    • 常见分布的期望及方差


引言

复习到后期,去做到前面内容的题目时,有一些需要记忆的结论就比较模糊,比如微分方程的特解形式、施密特正交、各种分布的概率密度等等。我便把这些模糊的点都记录下来了,整理在一起,方便随时查阅


一、高数

常见泰勒展开

基本形式: f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n . f(x)=\sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n. f(x)=n=0n!f(n)(x0)(xx0)n. 常见展开式: e x = x n n ! = 1 + x + 1 2 x 2 + ⋯ + 1 n ! x n + ⋯ , − ∞ < x < + ∞ . \pmb{e^x}= \frac{x^n}{n!}=1+x+\frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n+\cdots,-\infty<x<+\infty. ex=n!xn=1+x+21x2++n!1xn+,<x<+∞. ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + ⋯ + ( − 1 ) n − 1 x n n + ⋯ , − 1 < x ≤ 1. \ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+\cdots+(-1)^{n-1}\frac{x^n}{n}+\cdots,-1<x\leq1. ln(1+x)=x21x2+31x3++(1)n1nxn+,1<x1. sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯ , − ∞ < x < + ∞ . \pmb{\sin x}=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+\cdots,-\infty<x<+\infty. sinx=x3!1x3+5!1x5++(1)n(2n+1)!x2n+1+,<x<+∞. cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯ , − ∞ < x < + ∞ . \cos x=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots+(-1)^{n}\frac{x^{2n}}{(2n)!}+\cdots,-\infty<x<+\infty. cosx=12!1x2+4!1x4++(1)n(2n)!x2n+,<x<+∞. 1 1 + x = 1 − x + x 2 + ⋯ + ( − 1 ) n x n + ⋯ , − 1 < x < 1. \frac{1}{1+x}=1-x+x^2+\cdots+(-1)^nx^n+\cdots,-1<x<1. 1+x1=1x+x2++(1)nxn+,1<x<1. 1 1 − x = 1 + x + x 2 + ⋯ + x n + ⋯ , − 1 < x < 1. \pmb{\frac{1}{1-x}}=1+x+x^2+\cdots+x^n+\cdots,-1<x<1. 1x1=1+x+x2++xn+,1<x<1.

n n n 阶导数公式

分数 1 / ( a x + b ) 1/(ax+b) 1/(ax+b) n n n 阶导数: ( 1 a x + b ) ( n ) = ( − 1 ) n a n n ! ( a x + b ) n + 1 \big(\frac{1}{ax+b}\big)^{(n)}=(-1)^n\frac{a^nn!}{(ax+b)^{n+1}} (ax+b1)(n)=(1)n(ax+b)n+1ann! ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) , ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) (\sin{x})^{(n)}=\sin{(x+\frac{n\pi}{2})},(\cos{x})^{(n)}=\cos{(x+\frac{n\pi}{2})} (sinx)(n)=sin(x+2),(cosx)(n)=cos(x+2)

多元微分函数连续、可微、连续可偏导之间的关系

在这里插入图片描述

多元函数极值

无条件极值

在这里插入图片描述

条件极值

在这里插入图片描述

三角函数的积分性质

华里士公式( “点火”公式 )

首先是在区间 [ 0 , π / 2 ] [0,\pi/2] [0,π/2] sin ⁡ , cos ⁡ \sin,\cos sin,cos 可以互换,即 ∫ 0 π / 2 f ( sin ⁡ x ) d x = ∫ 0 π / 2 f ( cos ⁡ x ) d x \int_0^{\pi/2}f(\sin x)dx=\int_0^{\pi/2}f(\cos x)dx 0π/2f(sinx)dx=0π/2f(cosx)dx 特别地,有华里士公式(点火公式): I n = ∫ 0 π / 2 ( sin ⁡ x ) n d x = ∫ 0 π / 2 ( cos ⁡ x ) n d x = n − 1 n I n − 2 , I 0 = π 2 , I 1 = 1. I_n=\int_0^{\pi/2}(\sin x)^ndx=\int_0^{\pi/2}(\cos x)^ndx=\frac{n-1}{n}I_{n-2},I_0=\frac{\pi}{2},I_1=1. In=0π/2(sinx)ndx=0π/2(cosx)ndx=nn1In2,I0=2π,I1=1. 可以推广到更大的区间,在 [ 0 , π ] [0,\pi] [0,π] 上,由于 sin ⁡ x \sin x sinx 均为正,因此直接点火,乘个 2 就行。 ∫ 0 π ( sin ⁡ x ) n d x = 2 ∫ 0 π / 2 ( sin ⁡ x ) n d x . \int_0^{\pi}(\sin x)^ndx=2\int_0^{\pi/2}(\sin x)^ndx. 0π(sinx)ndx=20π/2(sinx)ndx. cos ⁡ x \cos x cosx 由于一半区间为负,因此奇数次和偶数次,奇数次为 0 (可以记忆为奇函数对称为 0 ),偶数次同样是乘 2 。 ∫ 0 π ( cos ⁡ x ) n d x = 2 ∫ 0 π / 2 ( cos ⁡ x ) n d x \int_0^{\pi}(\cos x)^ndx=2\int_0^{\pi/2}(\cos x)^ndx 0π(cosx)ndx=20π/2(cosx)ndx 对于在区间 [ 0 , 2 π ] [0,2\pi] [0,2π] 上, sin ⁡ , cos ⁡ \sin,\cos sin,cos 均有正有负,因此奇数次为 0 ,偶数次乘一个 4 。 ∫ 0 2 π ( sin ⁡ x ) n d x = ∫ 0 2 π ( cos ⁡ x ) n d x = 4 ∫ 0 π / 2 ( sin ⁡ x ) n d x . \int_0^{2\pi}(\sin x)^ndx=\int_0^{2\pi}(\cos x)^ndx=4\int_0^{\pi/2}(\sin x)^ndx. 02π(sinx)ndx=02π(cosx)ndx=40π/2(sinx)ndx.

特殊性质

[ 0 , π ] [0,\pi] [0,π] 上可以降到 [ 0 , π / 2 ] [0,\pi/2] [0,π/2] 上;证明方法为拆区间,令 t = x − π / 2 t=x-\pi/2 t=xπ/2 ,把后半部分换掉。 ∫ 0 π f ( sin ⁡ x ) d x = 2 ∫ 0 π / 2 f ( sin ⁡ x ) d x , t h e n w e h a v e , ∫ 0 π / 2 f ( sin ⁡ x ) d x = ∫ π / 2 π f ( sin ⁡ x ) d x . \int_0^{\pi}f(\sin x)dx=2\int_0^{\pi/2}f(\sin x)dx,then\space we \space have,\int_0^{\pi/2}f(\sin x)dx=\int_{\pi/2}^{\pi}f(\sin x)dx. 0πf(sinx)dx=20π/2f(sinx)dx,then we have,0π/2f(sinx)dx=π/2πf(sinx)dx. 多一个 x x x 可以提到积分外面来,即 ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π / 2 f ( sin ⁡ x ) d x . \int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx=\pi\int_0^{\pi/2}f(\sin x)dx. 0πxf(sinx)dx=2π0πf(sinx)dx=π0π/2f(sinx)dx. 证明方法为令 t = x − π t=x-\pi t=xπ

原函数与被积函数的奇偶性结论

  • f ( x ) f(x) f(x) 为奇函数可推出 ∫ a x f ( t ) d t \int_a^x f(t)dt axf(t)dt 为偶函数。
  • f ( x ) f(x) f(x) 为偶函数,不能得到 ∫ a x f ( t ) d t \int_a^x f(t)dt axf(t)dt 为奇函数,但可以得到 ∫ 0 x f ( t ) d t \int_0^x f(t)dt 0xf(t)dt 为奇函数。
  • ∫ a x f ( x ) d x \int_a^x f(x)dx axf(x)dx 为奇/偶函数,一定可以推得 f ( x ) f(x) f(x) 为相反的奇偶性。
  • ∫ a x f ( x ) d x \int_a^x f(x)dx axf(x)dx 为周期函数,一定可以推得 f ( x ) f(x) f(x) 也为周期函数,反之不一定。

球坐标变换公式

r r r 表示几何体上一点到原点距离,从原点引一条射线看范围; θ \theta θ 表示 r r r x O y xOy xOy 平面的投影直线与 x x x 轴正向的夹角,范围是 [ 0 , 2 π ] [0,2\pi] [0,2π] φ \varphi φ 表示和 z z z 轴正向夹角,范围是 [ 0 , π ] [0,\pi] [0,π] ,想象喇叭开花。

变换公式为 { x = r cos ⁡ θ sin ⁡ φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ φ , d x d y d z = r 2 sin ⁡ φ d r d θ d φ . \begin{cases} x=r\cos\theta \sin\varphi\\ y=r\sin \theta \sin\varphi \\ z=r\cos\varphi\end{cases},dxdydz=r^2\sin\varphi \space drd\theta d\varphi. x=rcosθsinφy=rsinθsinφz=rcosφ,dxdydz=r2sinφ drdθdφ.


二、线代

施密特正交化

把一组线性无关的向量组转化为一组两两正交且规范的向量组的过程,称为施密特正交化。

α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 线性无关,其正交化过程为:

(1)正交化 l e t β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 let\space \pmb{\beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1}\\ \pmb{\beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2}-\cdots-\pmb{\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1}} let β1=α1,β2=α2(β1,β1)(α2,β1)β1βn=αn(β1,β1)(αn,β1)β1(β2,β2)(αn,β2)β2(βn1,βn1)(αn,βn1)βn1 则向量组 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,,βn 两两正交。
(2)规范化。各自除以各自的模即可。

分块矩阵

首先是行列式,有以下三个结论:

(1) ∣ A 1 A 2 ⋱ A n ∣ = ∣ A 1 ∣ ⋅ ∣ A 2 ∣ ⋯ ∣ A n ∣ . \begin{vmatrix} \pmb{A_1} & & & \\ & \pmb{A_2} & & \\ & & \ddots & \\ & & & \pmb{A_n}\end{vmatrix}=|\pmb{A_1}|\cdot|\pmb{A_2}|\cdots|\pmb{A_n}|. A1A2An =A1A2An∣.

(2) ∣ A C O B ∣ = ∣ A O O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{A} & \pmb{C}\\ \pmb{O}& \pmb{B} \end{vmatrix}=\begin{vmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{vmatrix}=|\pmb{A}|\cdot|\pmb{B}|. AOCB = AOOB =AB∣.

(3)设 A , B \pmb{A,B} A,B 分别为 m , n m,n m,n 阶方阵,则有 ∣ O A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{vmatrix}=(-1)^{mn}|\pmb{A}|\cdot|\pmb{B}|. OBAO =(1)mnAB∣.

然后是转置的结论: [ A B C D ] T = [ A T C T B T D T ] . \begin{bmatrix} \pmb{A} & \pmb{B}\\ \pmb{C}& \pmb{D} \end{bmatrix}^T=\begin{bmatrix} \pmb{A^T} & \pmb{C^T}\\ \pmb{B^T}& \pmb{D^T} \end{bmatrix}. [ACBD]T=[ATBTCTDT].

接着是逆矩阵的结论: [ A O O B ] − 1 = [ A − 1 O O B − 1 ] , [ O A B O ] − 1 = [ O B − 1 A − 1 O ] . \begin{bmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{A^{-1}} & \pmb{O}\\ \pmb{O}& \pmb{B^{-1}} \end{bmatrix},\begin{bmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{O} & \pmb{B^{-1}}\\ \pmb{A^{-1}}& \pmb{O} \end{bmatrix}. [AOOB]1=[A1OOB1],[OBAO]1=[OA1B1O].

转置、逆、伴随之间的运算

对可逆矩阵,转置、逆和伴随可以随意交换顺序,即 ( A − 1 ) T = ( A T ) − 1 , ( A ∗ ) − 1 = ( A − 1 ) ∗ , ( A ∗ ) T = ( A T ) ∗ . (\pmb{A}^{-1})^T=(\pmb{A}^{T})^{-1},(\pmb{A}^{*})^{-1}=(\pmb{A}^{-1})^{*},(\pmb{A}^{*})^T=(\pmb{A}^{T})^*. (A1)T=(AT)1,(A)1=(A1),(A)T=(AT).

关于秩

定义

矩阵的秩的定义:

A \pmb{A} A m × n m\times n m×n 矩阵,从中任取 r r r r r r 列,元素按照原有次序构成的 r r r 阶行列式,称为矩阵 A \pmb{A} A r r r 阶子式。若 矩阵 A \pmb{A} A 中至少有一个 r r r 阶子式不为零,但所有 r + 1 r+1 r+1 阶子式(可能没有)均为零,称 r r r 为矩阵 A \pmb{A} A 的秩。

向量组秩的定义:

α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 为一组向量,若其存在 r r r 个向量线性无关,且任意 r + 1 r+1 r+1 个向量(不一定有)一定线性相关,称这 r r r 个线性无关的向量构成的向量组为 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,,αn 的极大线性无关组,极大线性无关组所含向量的个数,称为向量组的秩。

性质

矩阵的秩有如下性质: r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) . [ r ( A ) + r ( B ) − n ] ≤ r ( A + B ) ≤ r ( A ) + r ( B ) . r ( A B ) ≤ min ⁡ { r ( A ) , r ( B ) } . i f A B = O , t h e n , r ( A ) + r ( B ) ≤ n . i f ∣ P ∣ , ∣ Q ∣ ≠ 0 , r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) . r ( A ∗ ) = { n r ( A ) = n 1 r ( A ) = n − 1 0 r ( A ) < n − 1 , ( n ≥ 2 ) . l e t A m × n , B m × s , t h e n , max ⁡ { r ( A ) , r ( A ) } ≤ r ( A ⋮ B ) ≤ r ( A ) + r ( B ) . α , β ≠ 0 , r ( A ) = 1 ⟺ A = α β T . r ( A O O B ) = r ( A ) + r ( A ) . r(\pmb{A})=r(\pmb{A}^T)=r(\pmb{A}\pmb{A}^T)=r(\pmb{A}^T\pmb{A}).\\ [r(\pmb{A})+r(\pmb{B})-n]\leq r(\pmb{A}+\pmb{B})\leq r(\pmb{A})+r(\pmb{B}). \\ r(\pmb{AB})\leq \min\{r(\pmb{A}),r(\pmb{B})\}. \\ if\space \pmb{AB=O},then\space ,r(\pmb{A})+r(\pmb{B})\leq n. \\ if\space |\pmb{P}|,|\pmb{Q}|\ne0,r(\pmb{A})=r(\pmb{PA})=r(\pmb{AQ})=r(\pmb{PAQ}).\\ r(\pmb{A}^*)=\begin{cases} n&r(\pmb{A})=n\\ 1&r(\pmb{A})=n-1\\ 0&r(\pmb{A})<n-1 \end{cases},(n\geq2).\\ let\space \pmb{A}_{m\times n},\pmb{B}_{m\times s},then,\max\{r(\pmb{A}),r(\pmb{A})\}\leq r(\pmb{A}\space\vdots \space B)\leq r(\pmb{A})+r(\pmb{B}). \\ \pmb{\alpha,\beta\ne 0},r(\pmb{A})=1 \pmb{\Longleftrightarrow} \pmb{A}=\pmb{\alpha\beta}^T.\\ r\begin{pmatrix} \pmb{A} & \pmb{O} \\ \pmb{O}& \pmb{B}\end{pmatrix}=r(\pmb{A})+r(\pmb{A}). r(A)=r(AT)=r(AAT)=r(ATA).[r(A)+r(B)n]r(A+B)r(A)+r(B).r(AB)min{r(A),r(B)}.if AB=O,then ,r(A)+r(B)n.if P,Q=0,r(A)=r(PA)=r(AQ)=r(PAQ).r(A)= n10r(A)=nr(A)=n1r(A)<n1,(n2).let Am×n,Bm×s,then,max{r(A),r(A)}r(A  B)r(A)+r(B).α,β=0,r(A)=1A=αβT.r(AOOB)=r(A)+r(A).


三、概统

常见分布的期望及方差

{ 分布 ‾ 分布律或概率密度 ‾ 数学期望 ‾ 方差 ‾ ( 0 − 1 )分布 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 p p ( 1 − p ) 二项分布 P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 ⋯ n n p n p ( 1 − p ) 泊松分布 P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯ λ λ 正态分布 f ( x ) = 1 2 π σ E X P ( − ( x − μ ) 2 2 σ 2 ) μ σ 2 几何分布 P { X = k } = ( 1 − p ) k − 1 p , k = 1 , 2 , ⋯ 1 / p ( 1 − p ) / p 2 \begin{cases}\underline{分布}&\underline{分布律或概率密度}&\underline{数学期望}&\underline{方差}\\ (0-1)分布&P\{X=k\}=p^k(1-p)^{1-k},k=0,1&p&p(1-p)\\ 二项分布& P\{X=k\}=C_n^kp^k(1-p)^{n-k},k=0\cdots n&np&np(1-p)\\ 泊松分布&P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,\cdots&\lambda&\lambda \\ 正态分布 & f(x)=\frac{1}{\sqrt{2\pi}\sigma}E XP(-\frac{(x-\mu)^2}{2\sigma^2})&\mu&\sigma^2\\ 几何分布&P\{X=k\}=(1-p)^{k-1}p,k=1,2,\cdots&1/p&(1-p)/p^2\end{cases} 分布01)分布二项分布泊松分布正态分布几何分布分布律或概率密度P{X=k}=pk(1p)1k,k=0,1P{X=k}=Cnkpk(1p)nk,k=0nP{X=k}=k!λkeλ,k=0,1,2,f(x)=2π σ1EXP(2σ2(xμ)2)P{X=k}=(1p)k1p,k=1,2,数学期望pnpλμ1/p方差p(1p)np(1p)λσ2(1p)/p2 均匀分布: f ( x ) = { 1 / ( b − a ) , a < x < b 0 , e l s e , E ( X ) = a + b 2 , D ( X ) = ( b − a ) 2 12 . f(x)=\begin{cases} 1/(b-a),&a<x<b \\ 0,&else \end{cases},E(X)=\frac{a+b}{2},D(X)=\frac{(b-a)^2}{12}. f(x)={1/(ba),0,a<x<belse,E(X)=2a+b,D(X)=12(ba)2. 指数分布: f ( x ) = { λ e − λ x , x > 0 0 , e l s e , E ( X ) = 1 λ , D ( X ) = 1 λ 2 . f(x)=\begin{cases} \lambda e^{-\lambda x},&x>0 \\ 0,&else \end{cases},E(X)=\frac{1}{\lambda},D(X)=\frac{1}{\lambda^2}. f(x)={λeλx,0,x>0else,E(X)=λ1,D(X)=λ21.


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122803.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CondaError: Downloaded bytes did not match Content-Length

问题 使用anaconda下载包文件时&#xff0c;出现了CondaError: Downloaded bytes did not match Content-Length的错误 CondaError: Downloaded bytes did not match Content-Lengthurl: https://conda.anaconda.org/pytorch/win-64/pytorch-2.1.0-py3.11_cuda11.8_cudnn8_0.…

npm : 无法加载文件 C:\Program Files\nodejs\npm.ps1,因为在此系统上禁止运行脚本。

1、在vscode终端执行 get-ExecutionPolicy &#xff0c;显示Restricted&#xff0c;说明状态是禁止的。 2、更改状态: set-ExecutionPolicy RemoteSigned 出现需要管理员权限提示&#xff0c;可选择执行 Set-ExecutionPolicy -Scope CurrentUser 出现的ExecutionPolicy参数后输…

H5游戏源码分享-色块选择游戏

H5游戏源码分享-色块选择游戏 玩到后面色块越来越小&#xff0c;越来越难找出 <!DOCTYPE html><html><head><meta http-equiv"Content-Type" content"text/html; charsetUTF-8"><meta charset"UTF-8"><meta na…

bitlocker 加密锁定的固态硬盘,更换到别的电脑上,怎么把原密钥写进新电脑TPM芯片内,开启无需手动填密钥

环境: Win11 专业版 联想E14笔记本 512G ssd 问题描述: 一台笔记本因充电故障,需要拿去维修,不想重装系统,将bitlocker 加密锁定的固态硬盘拆下更换到别的笔记本电脑上,现在开机要手动填密钥,怎么把原密钥写进新电脑TPM芯片内,开启无需手动填密钥和之前那台电脑一…

C的自定义类型

目录 1. 结构体 1.1. 结构体类型的声明 1.1.1. 特殊声明 2. 结构的自引用 3. 结构体变量的定义和初始化 4. 结构体内存对齐 4.1. 结构体内存对齐 4.2. 修改默认对齐数 5. 结构体传参 6. 结构体实现位段&#xff08;位段的填充&可移植性&#xff09; 6.1. 什么是位…

Glide原理

本文基于Carson整理 1.简介 相比其他几种图片加载框架&#xff0c;Glide性能最好。这得益于其高效的图片缓存策略 其还有多样化的媒体格式加载&#xff1a;如GIF、Video&#xff0c;对于商城首页需展示丰富样式、信息的页面需求来说&#xff0c;也是必不可少的。 2.加载原理…

nodejs+vue+elementui+express酒店管理系统

登录&#xff1a;运行系统后&#xff0c;进行登录&#xff0c;可使用本系统。 客房预定&#xff1a;此界面先通过条件查询客房信息&#xff0c;然后进行客房预定。对预定的客房还可以取消和支付操作。 信息查询&#xff1a;可查询所有的公告信息&#xff0c;点击公告名称&#…

[量化投资-学习笔记003]Python+TDengine从零开始搭建量化分析平台-Grafana画K线图

在前面两个笔记&#xff1a; PythonTDengine从零开始搭建量化分析平台-数据存储 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 中有提到使用 Grafana 画图&#xff0c;不过画的都是均线。除了均线&#xff0c;Grafana 非常人性的提供了 K线图模块 搭配 TDeng…

基于群居蜘蛛算法的无人机航迹规划

基于群居蜘蛛算法的无人机航迹规划 文章目录 基于群居蜘蛛算法的无人机航迹规划1.群居蜘蛛搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用群居蜘蛛算法来优化无人机航迹规划。 …

Photoshop(PS)安装教程(2023最新最详细图文教程)

目录 一.简介 二.安装步骤 软件&#xff1a;PS版本&#xff1a;2023语言&#xff1a;简体中文大小&#xff1a;3.20G系统要求&#xff1a;Win10&#xff08;1903&#xff09;及以上版本&#xff0c;64位操作系统硬件要求&#xff1a;CPU2.0GHz 内存8G(或更高&#xff0c;不支持…

5G 3GPP全球频谱介绍

所谓 “频谱”&#xff0c;是指特定类型的无线通信所在的射频范围。不同的无线技术使用不同的频谱&#xff0c;因此互不干扰。由于一项技术的频谱是有限的&#xff0c;因此频谱空间存在大量竞争&#xff0c;并且人们也在不断开发和增强全新的、高效率的频谱使用方式。 介绍5G …

Vue echarts 折线图 背景颜色渐变 (两种实现方式)

需求 实现方式 两种方法 方法一&#xff1a;color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [{}&#xff0c;{}&#xff0c;{}]) 方法二&#xff1a;避开new echarts&#xff0c;color: {x: 0, y: 0, x2: 0, y2: 1,colorStops: [{}&#xff0c;{}&#xff0c;{}]} …

Linux(Centos7)操作记录

1、nginx -t #Nginx配置文件检查 上述截图代表检查没问题 上述截图检查配置文件配置错误&#xff0c;并提示错误文件位置 2、systemctl restart nginx #重启Nginx 重启Nginx失败 3、systemctl status nginx.service #查看Nginx服务状态 80端口被占导致服务启动失败 4、n…

k8s 金丝雀发布与声明式管理

Deployment控制器支持自定义控制更新过程中的滚动节奏&#xff0c;如“暂停(pause)”或“继续(resume)”更新操作。比如等待第一批新的Pod资源创建完成后立即暂停更新过程&#xff0c;此时&#xff0c;仅存在一部分新版本的应用&#xff0c;主体部分还是旧的版本。然后&#xf…

基于水循环算法的无人机航迹规划-附代码

基于水循环算法的无人机航迹规划 文章目录 基于水循环算法的无人机航迹规划1.水循环搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用水循环算法来优化无人机航迹规划。 1.水循环…

【赠书活动】从瀑布模式到水母模式:ChatGPT如何赋能软件研发全流程

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

YOLOv5算法 | 万字长文带你深度解析yolov5s.yaml配置文件

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。配置文件yolov5s.yaml在YOLOv5模型训练过程中发挥着至关重要的作用&#xff0c;属于初学者必知必会的文件&#xff01;在YOLOv5-6.0版本源码中&#xff0c;配置了5种不同大小的网络模型&#xff0c;分别是YOLOv5n、YOLOv5s…

使用GoQuery实现头条新闻采集

概述 在本文中&#xff0c;我们将介绍如何使用Go语言和GoQuery库实现一个简单的爬虫程序&#xff0c;用于抓取头条新闻的网页内容。我们还将使用爬虫代理服务&#xff0c;提高爬虫程序的性能和安全性。我们将使用多线程技术&#xff0c;提高采集效率。最后&#xff0c;我们将展…

Linux中shell脚本中的运算

目录 一、运算符号 二、运算指令 三、练习 一、运算符号 加法-减法*乘法/除法%除法后的余数**乘方自加一--自减一 <小于<小于等于>大于>大于等于等于ji&#xff0c;jji*jj*i/jj/i%jj%i 二、运算指令 (()) ##((a12)) let ##let a12 expr ##expr 1 2 …

0030Java程序设计-积分管理系统论文

文章目录 摘  要**目  录**系统实现系统功能需求3.2.1 管理员功能3.2.2 柜员功能 开发环境 摘  要 随着计算机和网络的不断革新&#xff0c;世界已经进入了前所未有的电子时代。作为实用性强、应用范围广泛的会员管理系统也正在被越来越多的各类企业用于消费管理领域。然…