【语义分割】语义分割概念及算法介绍

文章目录

  • 一、基本概念
  • 二、研究现状
    • 2.1 传统算法
    • 2.2 深度学习方法
  • 三、数据集及评价指标
    • 3.1 常用数据集
    • 3.2 常用指标
  • 四、经典模型
  • 参考资料

一、基本概念

语义分割是计算机视觉中很重要的一个方向。不同于目标检测和识别,语义分割实现了图像像素级的分类。它能够将一张图片或者视频(视频以帧来提取的话其实就是图片),按照类别的异同,将图像分为多个块。
如下图所示:

在这里插入图片描述

二、研究现状

2.1 传统算法

  • 灰度分割
    最简单的语义分段形式涉及分配区域必须满足的硬编码规则或属性,以便为其分配特定标签。规则可以根据像素的属性(例如灰度级强度)来构建。使用此技术的一种方法是拆分(Split)和合并(Merge)算法。该算法递归地将图像分割成子区域,直到可以分配标签,然后通过合并它们将相邻的子区域与相同的标签组合。
    这种方法的问题是规则必须硬编码。此外,仅用灰色级别的信息来表示复杂的类(如人)是极其困难的。因此,需要特征提取和优化技术来正确地学习这些复杂类所需的表示。

  • 条件随机场
    考虑通过训练模型为每个像素分配类来分割图像。如果我们的模型不完美,我们可能会得到自然界不可能得到的噪声分割结果(如图中所示,狗像素与猫像素混合)。
    可以通过考虑像素之间的先验关系来避免这些问题,例如,对象是连续的,因此附近的像素往往具有相同的标签。为了模拟这些关系,我们使用条件随机场(CRF)。
    CRF是一种用于结构化预测的统计建模方法。与离散分类器不同,CRF可以在进行预测之前考虑“相邻上下文”,比如像素之间的关系。这使得它成为语义分割的理想候选。
    图像中的每个像素都与一组有限的可能状态相关联。在我们的示例中,目标标签是可能的状态集。将一个状态(或标签,u)分配给单个像素(x)的成本称为它的一元成本(unary cost)。为了对像素之间的关系建模,我们还考虑了将一对标签(u,v)分配给一对像素(x,y)的成本,即成对成本(pairwise cost)。我们可以考虑它的近邻像素对(Grid CRF)或者我们可以考虑图像中的所有像素对(Dense CRF)
    在这里插入图片描述

2.2 深度学习方法

与此同时随着深度学习技术的不断发展,深度学习在语义分割任务中大放异彩,取得了骄人的成绩。从第一篇真正意义上的深度学习方法语义分割模型FCN说起,语义分割发展了不足六年的时间,经典的SegNet,Deeplab系列,DenseASPP等等,再到近些年来研究热点的NAS方法。不断的刷新各个分割数据集的Leaberboard。

三、数据集及评价指标

3.1 常用数据集

语义分割有一些常用的数据集,这些数据集在各种论文中常作为算法优劣性的一个验证(其中SUNRGBD是四维的,它还有利用深度学习相机得到了一个Deep维度,Depth类似于灰度图像,只是它的每个像素值是传感器距离物体的实际距离):
在这里插入图片描述

3.2 常用指标

  • 像素准确率(PA):正确分类的像素数量与所有像素数量的比值。
  • 像素准确率平均值(MPA):PA的变体,每个类内正确分类的像素数量和该类的所有像素点数 (Ground truth)的比值,之后求所有类的平均。
  • 平均交并比(MIoU):检验语义分割效果最重要的指标。计算两个集合的交并比,两个集合分别是真实值(Ground truth)和预测值(predicted segmentation),是一个交集与并集的比值。平均交并比为对各类的交并比进行平均。
    在这里插入图片描述

四、经典模型

  • FCN网络(CVPR 2015):图像分割领域的开山之作
    将端到端的卷积网络推广到语义分割中;
    重新将预训练好的Imagenet网络用于分割问题中;
    使用反卷积层进行上采样;
    提出了跳跃连接来改善上采样的粗糙程度。
    论文讲解博客:

  • UNet网络

  • SegNet网络

  • 空洞卷积(Dilated Convolution)

  • Deeplab(V1 V2)

  • RefineNet

  • PSPNet

  • 大内核(Large Kernel Matters)

  • Deeplab v3

  • EncNet

  • DenseASPP

  • ResNet_DUC

  • Deeplab v3+

  • DFANet

  • DANet

  • Auto_Deeplab

  • APCNet

  • CANet
    ……

  • BiSeNet(ECCV 2018)

  • STDC(CVPR 2021):BiSeNet的轻量化。
    一些轻量化语义分割算法,如DFANet、BiSeNetV1,采用了轻量化backbone来减少计算量,但它们都是直接使用为分类任务设计的backbone,无法充分发挥在语义分割领域中的性能。
    BiSeNet使用了multi-path结构,融合低层次特征和高层次特征,但增加分支会增加网络的运行时间。
    STDC对BiSeNet中的multi-path结构进行了改进,可以在提取底层细节特征的同时减少网络计算量。

参考资料

  • 语义分割-概念、问题和指标
  • 史上最全语义分割综述(FCN,UNet,SegNet,Deeplab,ASPP…)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122479.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用langchain-chatchat里,faiss库中报错: AssertionError ,位置:assert d == self.d

发生报错: AssertionError,发生位置:class_wrappers.py里 assert d self.d,假如输出语句,查看到是因为d和self.d维度不匹配造成,解决方式: 删除langchain-chatchat/knowledge_base里的info.db…

【iOS免越狱】利用IOS自动化web-driver-agent_appium-实现自动点击+滑动屏幕

1.目标 在做饭、锻炼等无法腾出双手的场景中,想刷刷抖音 刷抖音的时候有太多的广告 如何解决痛点 抖音自动播放下一个视频 iOS系统高版本无法 越狱 安装插件 2.操作环境 MAC一台,安装 Xcode iPhone一台,16 系统以上最佳 3.流程 下载最…

Python 算法高级篇:堆排序的优化与应用

Python 算法高级篇:堆排序的优化与应用 引言 1. 什么是堆?2. 堆的性质3. 堆排序的基本原理4. 堆排序的 Python 实现5. 堆排序的性能和优化6. 堆排序的实际应用7. 总结 引言 堆排序是一种高效的排序算法,它基于数据结构中的堆这一概念。堆排序…

C++进阶语法——OOP(面向对象)【学习笔记(四)】

文章目录 1、C OOP⾯向对象开发1.1 类(classes)和对象(objects)1.2 public、private、protected访问权限1.3 实现成员⽅法1.4 构造函数(constructor)和 析构函数(destructor)1.4.1 构…

Java基础 多线程

1.多线程创建方式1,继承Thread类: 2.多线程创建方式2: 匿名内部类写法 package thread;public class ThreadTest {public static void main(String[] args) {Runnable runnable new Runnable() {Overridepublic void run() {for (int i 0…

笔记本电脑的摄像头找不到黑屏解决办法

这种问题一般来说就是缺少驱动,就要下载驱动。 问题: 解决办法: 1.进入联想官网下载驱动 网站:https://newsupport.lenovo.com.cn/driveDownloads_index.html?v9d9bc7ad5023ef3c3d5e3cf386e2f187 2.下载主机编号检测工具 3.下…

虚幻中的网络概述一

前置:在学习完turbo强大佬的多人fps之后发觉自己在虚幻网络方面还有许多基础知识不太清楚,结合安宁Ken大佬与虚幻官方文档进行补足。 补充:官方文档中的描述挺好的,自己只算是搬运和将两者结合加强理解。 学习虚幻中的网络先从虚…

【Docker】Python Flask + Redis 练习

一、构建flask镜像 1.准备文件 创建app.py,内容如下 from flask import Flask from redis import Redis app Flask(__name__) redis Redis(hostos.environ.get(REDIS_HOST,127.0.0.1),port6379)app.route(/) def hello():redis.incr(hits)return f"Hello Container W…

串行原理编程,中文编程工具中的串行构件,串行连接操作简单

串行通信原理编程,中文编程工具中的串行通信构件,串行通信连接设置简单 编程系统化课程总目录及明细,点击进入了解详情。https://blog.csdn.net/qq_29129627/article/details/134073098?spm1001.2014.3001.5502 串行端口 是串行的基础&#…

【C++】类与对象 第二篇(构造函数,析构函数,拷贝构造,赋值重载)

目录 类的6个默认成员函数 初始化和清理 1.构造函数 2.析构函数 3.共同点 拷贝复制 1.拷贝构造 使用细节 2.赋值重载 运算符重载 < < > > ! 连续赋值 C入门 第一篇(C关键字&#xff0c; 命名空间&#xff0c;C输入&输出)-CSDN博客 C入门 第二篇( 引…

【开源】基于SpringBoot的海南旅游景点推荐系统的设计和实现

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四、核心代码4.1 随机景点推荐4.2 景点评价4.3 协同推荐算法4.4 网站登录4.5 查询景点美食 五、免责说明 一、摘要 1.1 项目介绍 基于VueSpringBootMySQL的海南旅游推荐系统&#xff…

2017年上半年上午易错题(软件设计师考试)

CPU 执行算术运算或者逻辑运算时&#xff0c;常将源操作数和结果暂存在&#xff08; &#xff09;中。 A &#xff0e; 程序计数器 (PC) B. 累加器 (AC) C. 指令寄存器 (IR) D. 地址寄存器 (AR) 某系统由下图所示的冗余部件构成。若每个部件的千小时可靠度都为 R &…

如何使用手机蓝牙设备作为电脑的解锁工具像动态锁那样,蓝牙接近了电脑,电脑自动解锁无需输入开机密码

环境&#xff1a; Win10 专业版 远程解锁 蓝牙解锁小程序 问题描述&#xff1a; 如何使用手机蓝牙设备作为电脑的解锁工具像动态锁那样&#xff0c;蓝牙接近了电脑&#xff0c;电脑自动解锁无需输入开机密码 手机不需要拿出来&#xff0c;在口袋里就可以自动解锁&#xff…

C#,数值计算——分类与推理,基座向量机的 Svmgenkernel的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { public abstract class Svmgenkernel { public int m { get; set; } public int kcalls { get; set; } public double[,] ker { get; set; } public double[] y { get; set…

机器学习-特征选择:如何使用互信息特征选择挑选出最佳特征?

一、引言 特征选择在机器学习中扮演着至关重要的角色&#xff0c;它可以帮助我们从大量的特征中挑选出对目标变量具有最大预测能力的特征。互信息特征选择是一种常用的特征选择方法&#xff0c;它通过计算特征与目标变量之间的互信息来评估特征的重要性。 互信息是信息论中的一…

Csdn文章编写参考案例

这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…

cosover是什么?crossover23又是什么软件

cosover是篮球里的过人技巧。 1.crossover在篮球中的本意是交叉步和急速交叉步。crossover 是篮球术语&#xff0c;有胯下运球、双手交替运球&#xff0c;交叉步过人、急速大幅度变向等之意。 2.在NBA里是指包括胯下运球、变向、插花在内的过人的技巧。 NBA有很多著名的Cross…

Linux进程等待

一、进程等待是什么&#xff1f; 通过系统调用wait/waitpid&#xff0c;来对子进程进行状态检验与回收的工作。 二、为什么要有进程等待 1、子进程退出&#xff0c;父进程如果不管不顾&#xff0c;就可能造成‘僵尸进程’的问题&#xff0c;进而造成内存泄漏。 另外&#xf…

数据库分库分表的原则

目录 1、数据库分库分表是什么 2、为什么要对数据库分库分表 3、何时选择分库分表 4、⭐分库分表遵循的原则 5、分库分表的方式 6、数据存放在表和库中的规则&#xff08;算法&#xff09; 7、分库分表的架构模式 8、分库分表的问题 小结 1、数据库分库分表是什么 数…

不一样的网络协议-------KCP协议

1、kcp 的协议特点 1.1、RTO 不翻倍 RTO(Retransmission TimeOut)&#xff0c;重传超时时间。tcp x 2&#xff0c;kcp x 1.5&#xff0c;提高传输速度 1.2、选择重传 TCP丢包时会全部重传从该包开始以后的数据&#xff0c;而KCP选择性重传&#xff0c;只重传真正丢失的数据包…