竞赛选题 深度学习图像分类算法研究与实现 - 卷积神经网络图像分类

文章目录

  • 0 前言
  • 1 常用的分类网络介绍
    • 1.1 CNN
    • 1.2 VGG
    • 1.3 GoogleNet
  • 2 图像分类部分代码实现
    • 2.1 环境依赖
    • 2.2 需要导入的包
    • 2.3 参数设置(路径,图像尺寸,数据集分割比例)
    • 2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)
    • 2.5 数据预处理
    • 2.6 训练分类模型
    • 2.7 模型训练效果
    • 2.8 模型性能评估
  • 3 1000种图像分类
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像分类算法研究与实现 - 卷积神经网络图像分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 常用的分类网络介绍

1.1 CNN

传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失函数。如下图:

在这里插入图片描述

  • 卷积层(convolution layer): 执行卷积操作提取底层到高层的特征,发掘出图片局部关联性质和空间不变性质。

  • 池化层(pooling layer): 执行降采样操作。通过取卷积输出特征图中局部区块的最大值(max-pooling)或者均值(avg-pooling)。降采样也是图像处理中常见的一种操作,可以过滤掉一些不重要的高频信息。

  • 全连接层(fully-connected layer,或者fc layer): 输入层到隐藏层的神经元是全部连接的。

  • 非线性变化: 卷积层、全连接层后面一般都会接非线性变化层,例如Sigmoid、Tanh、ReLu等来增强网络的表达能力,在CNN里最常使用的为ReLu激活函数。

  • Dropout : 在模型训练阶段随机让一些隐层节点权重不工作,提高网络的泛化能力,一定程度上防止过拟合

在CNN的训练过程总,由于每一层的参数都是不断更新的,会导致下一次输入分布发生变化,这样就需要在训练过程中花费时间去设计参数。在后续提出的BN算法中,由于每一层都做了归一化处理,使得每一层的分布相对稳定,而且实验证明该算法加速了模型的收敛过程,所以被广泛应用到较深的模型

1.2 VGG

VGG 模型是由牛津大学提出的(19层网络),该模型的特点是加宽加深了网络结构,核心是五组卷积操作,每两组之间做Max-
Pooling空间降维。同一组内采用多次连续的3X3卷积,卷积核的数目由较浅组的64增多到最深组的512,同一组内的卷积核数目是一样的。卷积之后接两层全连接层,之后是分类层。该模型由于每组内卷积层的不同主要分为
11、13、16、19 这几种模型

在这里插入图片描述

增加网络深度和宽度,也就意味着巨量的参数,而巨量参数容易产生过拟合,也会大大增加计算量。

1.3 GoogleNet

GoogleNet模型由多组Inception模块组成,模型设计借鉴了NIN的一些思想.

NIN模型特点:

  • 1. 引入了多层感知卷积网络(Multi-Layer Perceptron Convolution, MLPconv)代替一层线性卷积网络。MLPconv是一个微小的多层卷积网络,即在线性卷积后面增加若干层1x1的卷积,这样可以提取出高度非线性特征。
    
  • 2)设计最后一层卷积层包含类别维度大小的特征图,然后采用全局均值池化(Avg-Pooling)替代全连接层,得到类别维度大小的向量,再进行分类。这种替代全连接层的方式有利于减少参数。

Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构。

在这里插入图片描述

2 图像分类部分代码实现

2.1 环境依赖

python 3.7
jupyter-notebook : 6.0.3
cudatoolkit 10.0.130
cudnn 7.6.5
tensorflow-gpu 2.0.0
scikit-learn 0.22.1
numpy
cv2
matplotlib

2.2 需要导入的包

  import osimport cv2import numpy as npimport pandas as pdimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,modelsfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.optimizers import Adamfrom tensorflow.keras.callbacks import Callbackfrom tensorflow.keras.utils import to_categoricalfrom tensorflow.keras.applications import VGG19from tensorflow.keras.models import load_modelimport matplotlib.pyplot as pltfrom sklearn.preprocessing import label_binarizetf.compat.v1.disable_eager_execution()os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用GPU

2.3 参数设置(路径,图像尺寸,数据集分割比例)

 preprocessedFolder = '.\\ClassificationData\\' #预处理文件夹outModelFileName=".\\outModelFileName\\" ImageWidth = 512ImageHeight = 320ImageNumChannels = 3TrainingPercent = 70  #训练集比例ValidationPercent = 15 #验证集比例

2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)

def read_dl_classifier_data_set(preprocessedFolder):num = 0  # 图片的总数量cnt_class = 0  #图片所属的类别label_list = []  # 存放每个图像的label,图像的类别img_list = []   #存放图片数据for directory in os.listdir(preprocessedFolder):tmp_dir = preprocessedFolder + directorycnt_class += 1for image in os.listdir(tmp_dir):num += 1tmp_img_filepath = tmp_dir + '\\' + imageim = cv2.imread(tmp_img_filepath)  # numpy.ndarrayim = cv2.resize(im, (ImageWidth, ImageHeight))  # 重新设置图片的大小img_list.append(im)label_list.append(cnt_class)  # 在标签中添加类别print("Picture " + str(num) + "Load "+tmp_img_filepath+"successfully")
print("共有" + str(num) + "张图片")
print("all"+str(num)+"picturs belong to "+str(cnt_class)+"classes")
return np.array(img_list),np.array(label_list)all_data,all_label=read_dl_classifier_data_set(preprocessedFolder)

在这里插入图片描述

2.5 数据预处理

图像数据压缩, 标签数据进行独立热编码one-hot

def preprocess_dl_Image(all_data,all_label):all_data = all_data.astype("float32")/255  #把图像灰度值压缩到0--1.0便于神经网络训练all_label = to_categorical(all_label)  #对标签数据进行独立热编码return all_data,all_labelall_data,all_label = preprocess_dl_Image(all_data,all_label) #处理后的数据

对数据及进行划分(训练集:验证集:测试集 = 0.7:0.15:0.15)

def split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent):s = np.arange(all_data.shape[0])np.random.shuffle(s)  #随机打乱顺序all_data = all_data[s] #打乱后的图像数据all_label = all_label[s] #打乱后的标签数据all_len = all_data.shape[0]train_len = int(all_len*TrainingPercent/100)  #训练集长度valadation_len = int(all_len*ValidationPercent/100)#验证集长度temp_len=train_len+valadation_lentrain_data,train_label = all_data[0:train_len,:,:,:],all_label[0:train_len,:] #训练集valadation_data,valadation_label = all_data[train_len:temp_len, : , : , : ],all_label[train_len:temp_len, : ] #验证集test_data,test_label = all_data[temp_len:, : , : , : ],all_label[temp_len:, : ] #测试集return train_data,train_label,valadation_data,valadation_label,test_data,test_labeltrain_data,train_label,valadation_data,valadation_label,test_data,test_label=split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent)

2.6 训练分类模型

  • 使用迁移学习(基于VGG19)

  • epochs = 30

  • batch_size = 16

  • 使用 keras.callbacks.EarlyStopping 提前结束训练

    def train_classifier(train_data,train_label,valadation_data,valadation_label,lr=1e-4):conv_base = VGG19(weights='imagenet',include_top=False,input_shape=(ImageHeight, ImageWidth, 3) )  model = models.Sequential()model.add(conv_base)model.add(layers.Flatten())model.add(layers.Dense(30, activation='relu')) model.add(layers.Dense(6, activation='softmax')) #Dense: 全连接层。activation: 激励函数,‘linear’一般用在回归任务的输出层,而‘softmax’一般用在分类任务的输出层conv_base.trainable=Falsemodel.compile(loss='categorical_crossentropy',#loss: 拟合损失方法,这里用到了多分类损失函数交叉熵  optimizer=Adam(lr=lr),#optimizer: 优化器,梯度下降的优化方法 #rmspropmetrics=['accuracy'])model.summary() #每个层中的输出形状和参数。early_stoping =tf.keras.callbacks.EarlyStopping(monitor="val_loss",min_delta=0,patience=5,verbose=0,baseline=None,restore_best_weights=True)history = model.fit(train_data, train_label,batch_size=16, #更新梯度的批数据的大小 iteration = epochs / batch_size,epochs=30,  # 迭代次数validation_data=(valadation_data, valadation_label),  # 验证集callbacks=[early_stoping])return model,history
    model,history = train_classifier(train_data,train_label,valadation_data,valadation_label,)
    

在这里插入图片描述

2.7 模型训练效果

def plot_history(history):history_df = pd.DataFrame(history.history)history_df[['loss', 'val_loss']].plot()plt.title('Train and valadation loss')history_df = pd.DataFrame(history.history)history_df[['accuracy', 'val_accuracy']].plot()plt.title('Train and valadation accuracy')plot_history(history)

在这里插入图片描述

2.8 模型性能评估

  • 使用测试集进行评估

  • 输出分类报告和混淆矩阵

  • 绘制ROC和AUC曲线

    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import accuracy_score
    import seaborn as sns
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集数据进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    print('验证集分类报告:\n',classification_report(Y_test,Y_pred_tta))
    confusion_mc = confusion_matrix(Y_test,Y_pred_tta)#混淆矩阵
    df_cm = pd.DataFrame(confusion_mc)
    plt.figure(figsize = (10,7))
    sns.heatmap(df_cm, annot=True, cmap="BuPu",linewidths=1.0,fmt="d")
    plt.title('PipeLine accuracy:{0:.3f}'.format(accuracy_score(Y_test,Y_pred_tta)),fontsize=20)
    plt.ylabel('True label',fontsize=20)
    plt.xlabel('Predicted label',fontsize=20)
    

在这里插入图片描述

在这里插入图片描述

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_curve
from sklearn import metrics
import matplotlib as mpl# 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
y_score = model.predict_proba(test_data)
# 1、调用函数计算验证集的AUC 
print ('调用函数auc:', metrics.roc_auc_score(test_label, y_score, average='micro'))
# 2、手动计算验证集的AUC
#首先将矩阵test_label和y_score展开,然后计算假正例率FPR和真正例率TPR
fpr, tpr, thresholds = metrics.roc_curve(test_label.ravel(),y_score.ravel())
auc = metrics.auc(fpr, tpr)
print('手动计算auc:', auc)
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.figure(figsize = (10,7))
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title('37个验证集分类后的ROC和AUC', fontsize=18)
plt.show()

在这里插入图片描述

3 1000种图像分类

这是学长训练的能识别1000种类目标的图像分类模型,演示效果如下

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/121984.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java工具库——Commons IO的50个常用方法

工具库介绍 Commons IO(Apache Commons IO)是一个广泛用于 Java 开发的开源工具库,由Apache软件基金会维护和支持。这个库旨在简化文件和流操作,提供了各种实用工具类和方法,以便更轻松地进行输入输出操作。以下是 Com…

openpnp - SlotSchultzFeeder source code bugfix

文章目录 openpnp - SlotSchultzFeeder source code bugfix概述笔记openpnp源码调试环境排查思路开git分支查到的问题 - 1查到的问题 - 2查到的问题 - 3针对以上问题进行的逻辑修正D:\my_openpnp\openpnp_github\src\main\java\org\openpnp\machine\reference\driver\wizards\G…

Linux下自动挂载U盘或者USB移动硬盘

最近在折腾用树莓派(实际上是平替香橙派orangepi zero3)搭建共享文件服务器,有一个问题很重要,如何在系统启动时自动挂载USB移动硬盘。 1 使用/etc/fstab 最开始尝试了用/etc/fstab文件下增加:"/dev/sda1 /home/orangepi/s…

从入门到精通:深入了解CSS中的Grid网格布局技巧和应用!

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! ​ 目录 ⭐ 专栏简介 📘 文章引言 一…

论文阅读——GPT3

来自论文:Language Models are Few-Shot Learners Arxiv:https://arxiv.org/abs/2005.14165v2 记录下一些概念等。,没有太多细节。 预训练LM尽管任务无关,但是要达到好的效果仍然需要在特定数据集或任务上微调。因此需要消除这个…

Pytorch代码入门学习之分类任务(一):搭建网络框架

目录 一、网络框架介绍 二、导包 三、定义卷积神经网络 3.1 代码展示 3.2 定义网络的目的 3.3 Pytorch搭建网络 四、测试网络效果 一、网络框架介绍 网络理解: 将32*32大小的灰度图片(下述的代码中输入为32*32大小的RGB彩色图片)&…

【QT开发(17)】2023-QT 5.14.2实现Android开发

1、简介 搭建Qt For Android开发环境需要安装的软件有: JAVA SDK (jdk 有apt install 安装) Android SDK Android NDKQT官网的介绍: Different Qt versions depend on different NDK versions, as listed below: Qt versionNDK…

十五、城市建成区时空扩张分析——风向玫瑰图制作

一、前言 风向玫瑰图(简称风玫瑰图)也叫风向频率玫瑰图,它是根据某一地区多年平均统计的各个风向的百分数值,并按一定比例绘制,一般多用8个或16个罗盘方位表示,由于形状酷似玫瑰花朵而得名。 玫瑰图上所表示风的吹向,是指从外部吹向地区中心的方向,各方向上按统计数值…

13. 机器学习 - 数据集的处理

文章目录 Training data splitNormalizationStandardizedONE-HOT补充:SOFTMAX 和 CROSS-ENTROPY Hi, 你好。我是茶桁。 上一节课,咱们讲解了『拟合』,了解了什么是过拟合,什么是欠拟合。也说过,如果大家以…

SK海力士:将成为引领人工智能时代的定制型半导体存储器公司

AI芯片是一种专门针对人工智能应用设计的芯片,能够高效地处理人工智能任务,如机器学习、深度学习等。AI芯片具有高运算速度、低功耗、便于集成等特点,是人工智能领域的重要发展方向之一。 目前,AI芯片主要分为GPU、FPGA和ASIC三种…

Spark On Hive原理和配置

目录 一、Spark On Hive原理 (1)为什么要让Spark On Hive? 二、MySQL安装配置(root用户) (1)安装MySQL (2)启动MySQL设置开机启动 (3)修改MySQL…

Spring Boot进阶(94):从入门到精通:Spring Boot和Prometheus监控系统的完美结合

📣前言 随着云原生技术的发展,监控和度量也成为了不可或缺的一部分。Prometheus 是一款最近比较流行的开源时间序列数据库,同时也是一种监控方案。它具有极其灵活的查询语言、自身的数据采集和存储机制以及易于集成的特点。而 Spring Boot 是…

Android-宝宝相册(第四次作业)

第四次作业-宝宝相册 题目 用Listview建立宝宝相册,相册内容及图片可自行设定,也可在资料文件中获取。给出模拟器仿真界面及代码截图。 (参考例4-8) 创建工程项目 创建名为baby的项目工程,最后的工程目录结构如下图所…

报错:SSL routines:ssl3_get_record:wrong version number

一、问题描述 前后端联调的时候,连接后端本地服务器,接口一直pending调不通,控制台还报以下错误: 立马随手搜索了一下解决方案,但是emmm,不符合前端的实际情况: 二、解决方法: 实际…

SpringCore完整学习教程5,入门级别

本章从第6章开始 6. JSON Spring Boot提供了三个JSON映射库的集成: Gson Jackson JSON-B Jackson是首选的和默认的库。 6.1. Jackson 为Jackson提供了自动配置,Jackson是spring-boot-starter-json的一部分。当Jackson在类路径上时,将自动配置Obj…

理解V3中的proxy和reflect

现有如下面试题 结合GeexCode和Gpt // 这个函数名为onWatch,接受三个参数obj、setBind和getlogger。 // obj是需要进行监视的对象。 // setBind是一个回调函数,用于在设置属性时进行绑定操作。 // getlogger是一个回调函数,用于在获取属性时…

【阅读和学习代码】VoxelNet

文章目录 将点特征 转换为 voxel 特征稀疏张量 到 稠密张量,反向索引参考博客 将点特征 转换为 voxel 特征 https://github.com/skyhehe123/VoxelNet-pytorch/blob/master/data/kitti.py 【Python】np.unique() 介绍与使用 self.T : # maxiumum numbe…

php简单后门实现及php连接数据库

php简单后门实现 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>easybackdoor</title>…

云服务器搭建Spark集群

文章目录 1. Local 模式1.1 安装local模式1.2 命令行工具1.3 提交本地应用 2. Standlone模式2.1 集群配置2.2 修改配置文件2.3 启动集群与停止集群2.4 提交应用到集群环境2.5 提交应用的参数详细说明2.6 配置历史服务2.7 配置高可用&#xff08;HA&#xff09; 3. Yarn模式&…

如何使用ffmpeg制作透明背景的视频

最近我们尝试在网页上叠加数字人讲解的功能&#xff0c;发现如果直接在网页上放一个矩形的数字人视频&#xff0c;效果会很差&#xff0c;首先是会遮挡很多画面的内容&#xff0c;其次就是不管使用任何任务背景&#xff0c;画面都和后面的网页不是很协调&#xff0c;如图所示&a…