Python实现双目标定、畸变矫正、立体矫正

一,双目标定、畸变矫正、立体矫正的作用

  1. 双目目标定

    • 3D重建和测距:通过双目目标定,您可以确定两个摄像头之间的相对位置和朝向,从而能够根据视差信息计算物体的深度,进行三维重建和测距。
    • 姿态估计:双目摄像头可以用于估计物体或相机的姿态,这对于虚拟现实、增强现实和机器人导航等应用非常重要。
  2. 畸变矫正

    • 图像质量提高:镜头畸变会引入图像失真,畸变矫正可以改善图像质量,使物体的形状更准确。
    • 特征匹配:在图像特征匹配中,畸变矫正可以提高匹配的精度,有助于在不同视图之间正确匹配特征点。
  3. 立体矫正

    • 立体视觉:立体矫正是用于双目或多目视觉系统的关键步骤,可使两个摄像头的像素对应点在同一水平线上,从而简化了立体视觉中的视差计算。
    • 深度感知:立体矫正后,您可以使用视差图来估计物体的深度,这对于实现深度感知和3D重建非常重要。

二,双目拍照代码

#coding:utf-8
import cv2
import time
import timeleft_camera = cv2.VideoCapture(0)
left_camera.set(cv2.CAP_PROP_FRAME_WIDTH,640)
left_camera.set(cv2.CAP_PROP_FRAME_HEIGHT,480)right_camera = cv2.VideoCapture(1)
right_camera.set(cv2.CAP_PROP_FRAME_WIDTH,640)
right_camera.set(cv2.CAP_PROP_FRAME_HEIGHT,480)path="/home/song/pic/" #图片存储路径AUTO =False   # True自动拍照,False则手动按s键拍照
INTERVAL = 0.0000005 # 调整自动拍照间隔cv2.namedWindow("left")
cv2.namedWindow("right")
cv2.moveWindow("left", 0, 0)counter = 0
utc = time.time()
folder = "/home/song/pic/" # 照片存储路径def shot(pos, frame):global countertimestr = datetime.datetime.now()path = folder + pos + "_" + str(counter) +".jpg"cv2.imwrite(path, frame)print("snapshot saved into: " + path)while True:ret, left_frame = left_camera.read()ret, right_frame = right_camera.read()cv2.imshow("left", left_frame)cv2.imshow("right", right_frame)now = time.time()if AUTO and now - utc >= INTERVAL:shot("left", left_frame)shot("right", right_frame)counter += 1utc = nowkey = cv2.waitKey(1)if key == ord("q"):breakelif key == ord("s"):shot("left", left_frame)shot("right", right_frame)counter += 1left_camera.release()
right_camera.release()
cv2.destroyWindow("left")
cv2.destroyWindow("right")

三,分别对左右目进行标定

在进行双目相机的标定之前,需要先对左右目的单目摄像头进行单目标定。这是因为双目摄像头的标定需要知道每个摄像头的内部参数(如相机矩阵、畸变系数)以及相机之间的外部参数(相对位置和朝向)。这些参数是通过单目标定来获得的。

单目标定通常包括以下步骤:

  1. 相机内参标定:通过拍摄一个包含已知尺寸的标定板的图像,然后使用相机标定算法来估计相机内参,如焦距、主点坐标和畸变系数。

  2. 相机外参标定:通过将相机放置在不同位置或拍摄不同方向的图像,使用外参标定算法来估计相机的位置和朝向。这一步通常需要多幅图像,以确定相机在三维空间中的位置和姿态。

  3. 畸变矫正:使用内参标定得到的畸变系数来矫正图像,以去除镜头畸变。

  4. 生成标定文件:将内外参和畸变系数保存在标定文件中,以便后续的双目标定使用。

一旦单目摄像头的内部参数、外部参数和畸变系数都已知,就可以进行双目标定,以确定双目摄像头之间的相对位置和朝向,以及立体视觉中的标定参数。

#-*- coding:utf-8 -*-
import numpy as np
import cv2
import glob# 设置迭代终止条件
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)# 设置 object points, 形式为 (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*7,3), np.float32) #我用的是6×7的棋盘格,可根据自己棋盘格自行修改相关参数
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)# 用arrays存储所有图片的object points 和 image points
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.#用glob匹配文件夹/home/song/pic_1/right/下所有文件名含有“.jpg"的图片
images = glob.glob(r"/home/song/pic/right/*.jpg")for fname in images:img = cv2.imread(fname)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 查找棋盘格角点ret, corners = cv2.findChessboardCorners(gray, (7,6), None)# 如果找到了就添加 object points, image pointsif ret == True:objpoints.append(objp)corners2=cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)imgpoints.append(corners)# 对角点连接画线加以展示cv2.drawChessboardCorners(img, (7,6), corners2, ret)cv2.imshow('img', img)cv2.waitKey(500)
cv2.destroyAllWindows()# 标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
print(mtx, dist)#对所有图片进行去畸变,有两种方法实现分别为: undistort()和remap()
images = glob.glob(r"/home/song/pic/right/*.jpg")
for fname in images:prefix=fname.split('/')[5]img = cv2.imread(fname)h,  w = img.shape[:2]newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))# # 使用 cv.undistort()进行畸变校正# dst = cv2.undistort(img, mtx, dist, None, newcameramtx)# # 对图片有效区域进行剪裁# # x, y, w, h = roi# # dst = dst[y:y+h, x:x+w]# cv2.imwrite('/home/song/pic_1/undistort/'+prefix, dst)#  使用 remap() 函数进行校正mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h), 5)dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)# 对图片有效区域进行剪裁x, y, w, h = roidst = dst[y:y + h, x:x + w]cv2.imwrite('/home/song/pic/undistort/'+prefix, dst)#重投影误差计算
mean_error = 0
for i in range(len(objpoints)):imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)mean_error += errorprint("total error: ", mean_error/len(objpoints))

四,双目标定及其立体校正

#coding:utf-8
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image# 设置迭代终止条件
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
criteria_stereo = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)# 设置 object points, 形式为 (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6 * 7, 3), np.float32)  #我用的是6×7的棋盘格,可根据自己棋盘格自行修改相关参数
objp[:, :2] = np.mgrid[0:7, 0:6].T.reshape(-1, 2)# 用arrays存储所有图片的object points 和 image points
objpoints = []  # 3d points in real world space
imgpointsR = []  # 2d points in image plane
imgpointsL = []# 本次实验采集里共计30组待标定图片依次读入进行以下操作
for i in range(0,30):  t = str(i)ChessImaR = cv2.imread('/home/song/pic/right_' + t + '.jpg', 0)  # 右视图ChessImaL = cv2.imread('/home/song/pic/left_' + t + '.jpg', 0)  # 左视图retR, cornersR = cv2.findChessboardCorners(ChessImaR,(7, 6), None)  # 提取右图每一张图片的角点retL, cornersL = cv2.findChessboardCorners(ChessImaL,(7, 6), None)  # # 提取左图每一张图片的角点if (True == retR) & (True == retL):objpoints.append(objp)cv2.cornerSubPix(ChessImaR, cornersR, (11, 11), (-1, -1), criteria)  # 亚像素精确化,对粗提取的角点进行精确化cv2.cornerSubPix(ChessImaL, cornersL, (11, 11), (-1, -1), criteria)  # 亚像素精确化,对粗提取的角点进行精确化imgpointsR.append(cornersR)imgpointsL.append(cornersL)# 相机的单双目标定、及校正
#   右侧相机单独标定
retR, mtxR, distR, rvecsR, tvecsR = cv2.calibrateCamera(objpoints,imgpointsR,ChessImaR.shape[::-1], None, None)#   获取新的相机矩阵后续传递给initUndistortRectifyMap,以用remap生成映射关系
hR, wR = ChessImaR.shape[:2]
OmtxR, roiR = cv2.getOptimalNewCameraMatrix(mtxR, distR,(wR, hR), 1, (wR, hR))#   左侧相机单独标定
retL, mtxL, distL, rvecsL, tvecsL = cv2.calibrateCamera(objpoints,imgpointsL,ChessImaL.shape[::-1], None, None)#   获取新的相机矩阵后续传递给initUndistortRectifyMap,以用remap生成映射关系
hL, wL = ChessImaL.shape[:2]
OmtxL, roiL = cv2.getOptimalNewCameraMatrix(mtxL, distL, (wL, hL), 1, (wL, hL))# 双目相机的标定
# 设置标志位为cv2.CALIB_FIX_INTRINSIC,这样就会固定输入的cameraMatrix和distCoeffs不变,只求解𝑅,𝑇,𝐸,𝐹
flags = 0
flags |= cv2.CALIB_FIX_INTRINSICretS, MLS, dLS, MRS, dRS, R, T, E, F = cv2.stereoCalibrate(objpoints,imgpointsL,imgpointsR,OmtxL,distL,OmtxR,distR,ChessImaR.shape[::-1], criteria_stereo,flags)# 利用stereoRectify()计算立体校正的映射矩阵
rectify_scale= 1 # 设置为0的话,对图片进行剪裁,设置为1则保留所有原图像像素
RL, RR, PL, PR, Q, roiL, roiR= cv2.stereoRectify(MLS, dLS, MRS, dRS,ChessImaR.shape[::-1], R, T,rectify_scale,(0,0))  
# 利用initUndistortRectifyMap函数计算畸变矫正和立体校正的映射变换,实现极线对齐。
Left_Stereo_Map= cv2.initUndistortRectifyMap(MLS, dLS, RL, PL,ChessImaR.shape[::-1], cv2.CV_16SC2)   Right_Stereo_Map= cv2.initUndistortRectifyMap(MRS, dRS, RR, PR,ChessImaR.shape[::-1], cv2.CV_16SC2)#立体校正效果显示
for i in range(0,1):  # 以第一对图片为例t = str(i)frameR = cv2.imread('/home/song/pic/right_' + t + '.jpg', 0)  frameL = cv2.imread('/home/song/pic/left_' + t + '.jpg', 0) Left_rectified= cv2.remap(frameL,Left_Stereo_Map[0],Left_Stereo_Map[1], cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)  # 使用remap函数完成映射im_L=Image.fromarray(Left_rectified) # numpy 转 image类Right_rectified= cv2.remap(frameR,Right_Stereo_Map[0],Right_Stereo_Map[1], cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)im_R=Image.fromarray(Right_rectified) # numpy 转 image 类#创建一个能同时并排放下两张图片的区域,后把两张图片依次粘贴进去width = im_L.size[0]*2height = im_L.size[1]img_compare = Image.new('RGBA',(width, height))img_compare.paste(im_L,box=(0,0))img_compare.paste(im_R,box=(640,0))#在已经极线对齐的图片上均匀画线for i in range(1,20):len=480/20plt.axhline(y=i*len, color='r', linestyle='-')plt.imshow(img_compare)plt.show()

五,双目的具体应用

双目视觉是指通过两个摄像头(或相机)捕获的图像来模拟人类双眼视觉系统。它可以提供更多的深度信息和立体感,因此在许多领域都有具体的应用。

以下是一些双目视觉的具体应用:

  1. 三维重建:通过双目摄像头捕获的图像,可以使用立体视觉算法来重建场景的三维结构。这对于计算机辅助设计、虚拟现实、增强现实等领域非常有用。

  2. 物体检测与跟踪:双目视觉可以提供更多的深度信息,从而使得物体检测和跟踪更加准确和稳定。例如,在自动驾驶中,双目视觉可以用于检测和跟踪其他车辆、行人等。

  3. 深度感知:通过双目视觉可以获取场景中物体的深度信息,从而可以进行深度感知和距离测量。这在机器人导航、室内定位、无人机避障等领域非常有用。

  4. 姿态估计:双目视觉可以用于估计物体或人体的姿态和运动。例如,在人机交互中,双目视觉可以用于手势识别和追踪。

  5. 立体匹配:通过双目视觉可以进行立体匹配,即将两个图像中对应的像素点进行匹配。这在计算机视觉中是一个重要的问题,可以用于图像配准、目标识别等。

  6. 视觉SLAM:双目视觉可以与同步定位与地图构建(SLAM)算法结合使用,实现同时定位和地图构建。这在无人车、无人机等领域中非常重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/121735.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu部署docker及docker常用操作

Ubuntu上安装Docker步骤: 更新软件包列表: sudo apt update安装一些必要的软件包,以便您可以通过HTTPS使用存储库: sudo apt install apt-transport-https ca-certificates curl software-properties-common添加Docker的官方GP…

CVE-2022-22963 Spring Cloud Function SpEL命令注入

一、简介 Spring Cloud Function 是基于 Spring Boot的函数计算框架。该项目致力于促进函数为主的开发单元,它抽象出所有传输细节和基础架构,并提供一个通用的模型,用于在各种平台上部署基于函数的软件。在Spring Cloud Function相关版本&am…

在3台不联网的 CentOS 7.8 服务器上部署 Elasticsearch 6.8 集群

为了在3台不联网的 CentOS 7.8 服务器上部署 Elasticsearch 6.8.23 集群,并考虑到path.data和path.logs的配置,我们可以按照以下步骤进行操作: 1. 准备工作 1.1 从有网络的机器下载 Elasticsearch 6.8.23 的 RPM 包: https://w…

京东平台数据分析:2023年9月京东空气净化器行业品牌销售排行榜

鲸参谋监测的京东平台9月份空气净化器市场销售数据已出炉! 9月份,空气净化器的销售同比上年增长。根据鲸参谋平台的数据显示,今年9月,京东平台空气净化器的销量将近15万,同比增长约1%;销售额将近2亿元&…

低代码平台深度剖析

随着数字化转型的不断推进,低代码平台也在高速发展中。越来越多的企业开始慢慢习惯于低代码平台的优势,并从中获益。低代码平台厂商也在不断推陈出新,以跟紧市场变化,简化开发者的工作。 一、什么是低代码平台? 低代码…

Mac版好用的Git客户端 Fork 免激活

Fork是一款强大的Git客户端软件,在Mac和Windows操作系统上都可以使用。汇集了众多先进的功能和工具,可以帮助用户更方便地管理和控制Git仓库。 Fork的界面简洁直观,易于使用。它提供了许多高级的Git功能,如分支管理、合并、提交、…

NTRU 加密方案

参考文献: [Rivest97] Rivest R L. All-or-nothing encryption and the package transform[C]//Fast Software Encryption: 4th International Workshop, FSE’97 Haifa, Israel, January 20–22 1997 Proceedings 4. Springer Berlin Heidelberg, 1997: 210-218.[…

每日一题 2558. 从数量最多的堆取走礼物(简单,heapq)

怎么这么多天都是简单题,不多说了 class Solution:def pickGifts(self, gifts: List[int], k: int) -> int:gifts [-gift for gift in gifts]heapify(gifts)for i in range(k):heappush(gifts, -int(sqrt(-heappop(gifts))))return -sum(gifts)

什么是响应式设计?响应式设计的基本原理是什么?如何实现

什么是响应式设计 响应式就是同一个代码可以自动适应不同设备和屏幕尺寸,以提供最佳的用户体验。响应式设计的目标是确保网站在不同设备上呈现内容和布局时能够自动调整,以适应屏幕的大小和方向。这意味着网站可以在台式电脑、平板电脑、手机和其他各种…

多线程---线程安全问题及解决

文章目录 一个线程不安全的案例造成线程不安全的原因抢占式执行多个线程修改同一个变量修改操作不是原子的内存可见性问题指令重排序问题 如何让线程变得安全?加锁synchronized volatile 一个线程不安全的案例 题目:有较短时间让变量count从0加到10_000…

行业追踪,2023-10-26

自动复盘 2023-10-26 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…

音视频开发常见问题(五):视频黑屏

摘要 本文介绍了视频黑屏的可能原因和解决方案。主要原因包括用户主动关闭视频、网络问题和渲染问题。解决方案包括优化网络稳定性、确保视频渲染视图设置正确、提供清晰的提示、实时监测网络质量、使用详细的日志系统、开启视频预览功能、使用视频流回调、处理编解码问题、处…

Reactor反应器模式

文章目录 一、单线程Reactor反应器模式二、多线程Reactor反应器模式 在Java的OIO编程中,最初和最原始的网络服务器程序使用一个while循环,不断地监听端口是否有新的连接,如果有就调用一个处理函数来处理。这种方法最大的问题就是如果前一个网…

分享一波操作系统、谢希仁版本计算机网络学习笔记【思维导图】

操作系统复习笔记 - 幕布第一章引论第二章处理器管理进程同步与通信https://www.mubu.com/doc/58qrnf20ndg 大纲 - 幕布物理层数据链路层网络层https://www.mubu.com/doc/1eo9_8TyUdg计算机网络-语雀https://www.yuque.com/yuqueyonghu6nc56e/dgg1dl/wx34gx72xpgmt598?singleD…

HackTheBox-Starting Point--Tier 1---Crocodile

文章目录 一 题目二 实验过程 一 题目 Tags Web、Network、Custom Applications、Protocols、Apache、FTP、Reconnaissance、Web Site Structure Discovery、Clear Text Credentials、Anonymous/Guest Access译文:Web、网络、定制应用程序、协议、Apache、FTP、侦…

Python的random随机模块相关学习记录

random是有关随机功能的一个内置模块 import random# 获取0-1之间的随机小数 print(random.random()) # 0.6224750165089413 # 获取0-1之间的随机小数# a-----b之间的随机小数 a 0 b 10 print(random.uniform(a, b)) # 1.25491670861257# 两边的值都包含在内,获…

html和css中图片加载与渲染的规则是什么?

浏览器渲染web页面的过程 解析html,构成dom树 2.加载css,构成样式规则树 3.加载js,解析js代码 4.dom树和样式树进行匹配,构成渲染树 5.计算元素位置进行页面布局 5.绘制页面,呈现到浏览器中 图片加载和渲染的过程 1.解…

java后端请求过滤options方式,亲测有效

前端每次发出post 请求时,浏览器会默认请求2次,一次是options类型,一次是真实的请求,为了避免这种情况发生,需在后端过滤器中拦截下options请求,代码如下: import java.io.IOException; import …

华为eNSP配置专题-策略路由的配置

文章目录 华为eNSP配置专题-策略路由的配置0、概要介绍1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、终端构成和连接2.2、终端的基本配置 3、配置接入交换机上的VLAN4、配置核心交换机为网关和DHCP服务器5、配置核心交换机和出口路由器互通6、配置PC和出口路由器…

【软件安装环境配置】vscode 安装界面没有出现安装路径的选择 的解决,以及vscode的删除的问题

由于vscode 没有删除干净,就会出现vscode 安装的时候,没有出现安装路径的界面,所以可以来到vscode的安装路径,点击 unins000.exe 文件就可以 实现将vscode 相关的文件删除, 如果是删除了整个vscode 安装下的文件&…