一、yolov5 pt模型转onnx
code:
https://github.com/ultralytics/yolov5
python export.py --weights yolov5s.pt --include onnx
二、onnx 推理
import os
import cv2
import numpy as np
import onnxruntime
import timeCLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone','microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear','hair drier', 'toothbrush'] # coco80类别class YOLOV5():def __init__(self, onnxpath):self.onnx_session = onnxruntime.InferenceSession(onnxpath)self.input_name = self.get_input_name()self.output_name = self.get_output_name()# -------------------------------------------------------# 获取输入输出的名字# -------------------------------------------------------def get_input_name(self):input_name = []for node in self.onnx_session.get_inputs():input_name.append(node.name)return input_namedef get_output_name(self):output_name = []for node in self.onnx_session.get_outputs():output_name.append(node.name)return output_name# -------------------------------------------------------# 输入图像# -------------------------------------------------------def get_input_feed(self, img_tensor):input_feed = {}for name in self.input_name:input_feed[name] = img_tensorreturn input_feed# -------------------------------------------------------# 1.cv2读取图像并resize# 2.图像转BGR2RGB和HWC2CHW# 3.图像归一化# 4.图像增加维度# 5.onnx_session 推理# -------------------------------------------------------def inference(self, img_path):img = cv2.imread(img_path)or_img = cv2.resize(img, (640, 640))img = or_img[:, :, ::-1].transpose(2, 0, 1) # BGR2RGB和HWC2CHWimg = img.astype(dtype=np.float32)img /= 255.0img = np.expand_dims(img, axis=0)input_feed = self.get_input_feed(img)pred = self.onnx_session.run(None, input_feed)[0]return pred, or_img# dets: array [x,6] 6个值分别为x1,y1,x2,y2,score,class
# thresh: 阈值
def nms(dets, thresh):x1 = dets[:, 0]y1 = dets[:, 1]x2 = dets[:, 2]y2 = dets[:, 3]# -------------------------------------------------------# 计算框的面积# 置信度从大到小排序# -------------------------------------------------------areas = (y2 - y1 + 1) * (x2 - x1 + 1)scores = dets[:, 4]keep = []index = scores.argsort()[::-1]while index.size > 0:i = index[0]keep.append(i)# -------------------------------------------------------# 计算相交面积# 1.相交# 2.不相交# -------------------------------------------------------x11 = np.maximum(x1[i], x1[index[1:]])y11 = np.maximum(y1[i], y1[index[1:]])x22 = np.minimum(x2[i], x2[index[1:]])y22 = np.minimum(y2[i], y2[index[1:]])w = np.maximum(0, x22 - x11 + 1)h = np.maximum(0, y22 - y11 + 1)overlaps = w * h# -------------------------------------------------------# 计算该框与其它框的IOU,去除掉重复的框,即IOU值大的框# IOU小于thresh的框保留下来# -------------------------------------------------------ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)idx = np.where(ious <= thresh)[0]index = index[idx + 1]return keepdef xywh2xyxy(x):# [x, y, w, h] to [x1, y1, x2, y2]y = np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2y[:, 1] = x[:, 1] - x[:, 3] / 2y[:, 2] = x[:, 0] + x[:, 2] / 2y[:, 3] = x[:, 1] + x[:, 3] / 2return ydef filter_box(org_box, conf_thres, iou_thres): # 过滤掉无用的框# -------------------------------------------------------# 删除为1的维度# 删除置信度小于conf_thres的BOX# -------------------------------------------------------org_box = np.squeeze(org_box)conf = org_box[..., 4] > conf_thresbox = org_box[conf == True]# -------------------------------------------------------# 通过argmax获取置信度最大的类别# -------------------------------------------------------cls_cinf = box[..., 5:]cls = []for i in range(len(cls_cinf)):cls.append(int(np.argmax(cls_cinf[i])))all_cls = list(set(cls))# -------------------------------------------------------# 分别对每个类别进行过滤# 1.将第6列元素替换为类别下标# 2.xywh2xyxy 坐标转换# 3.经过非极大抑制后输出的BOX下标# 4.利用下标取出非极大抑制后的BOX# -------------------------------------------------------output = []for i in range(len(all_cls)):curr_cls = all_cls[i]curr_cls_box = []curr_out_box = []for j in range(len(cls)):if cls[j] == curr_cls:box[j][5] = curr_clscurr_cls_box.append(box[j][:6])curr_cls_box = np.array(curr_cls_box)# curr_cls_box_old = np.copy(curr_cls_box)curr_cls_box = xywh2xyxy(curr_cls_box)curr_out_box = nms(curr_cls_box, iou_thres)for k in curr_out_box:output.append(curr_cls_box[k])output = np.array(output)return outputdef draw(image, box_data):# -------------------------------------------------------# 取整,方便画框# -------------------------------------------------------boxes = box_data[..., :4].astype(np.int32)scores = box_data[..., 4]classes = box_data[..., 5].astype(np.int32)for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = boxprint('class: {}, score: {}'.format(CLASSES[cl], score))print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)if __name__ == "__main__":onnx_path = 'yolov5s.onnx'model = YOLOV5(onnx_path)output, or_img = model.inference('bus.jpg')print(output.shape) # (1, 25200, 85)print(or_img.shape) # (640, 640, 3)outbox = filter_box(output, 0.5, 0.5)draw(or_img, outbox)cv2.imwrite('res.jpg', or_img)
三、yolov5-7.0 tensorrt推理
https://zhuanlan.zhihu.com/p/655640909
"""
An example that uses TensorRT's Python api to make inferences video.
"""
import ctypes
import os
import shutil
import random
import sys
import threading
import time
import cv2
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trtCONF_THRESH = 0.5
IOU_THRESHOLD = 0.4
LEN_ALL_RESULT = 38001
LEN_ONE_RESULT = 38def get_img_path_batches(batch_size, img_dir):ret = []batch = []for root, dirs, files in os.walk(img_dir):for name in files:if len(batch) == batch_size:ret.append(batch)batch = []batch.append(os.path.join(root, name))if len(batch) > 0:ret.append(batch)return retdef plot_one_box(x, img, color=None, label=None, line_thickness=None):"""description: Plots one bounding box on image img,this function comes from YoLov5 project.param: x: a box likes [x1,y1,x2,y2]img: a opencv image objectcolor: color to draw rectangle, such as (0,255,0)label: strline_thickness: intreturn:no return"""tl = (line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1) # line/font thicknesscolor = color or [random.randint(0, 255) for _ in range(3)]c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)if label:tf = max(tl - 1, 1) # font thicknesst_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filledcv2.putText(img,label,(c1[0], c1[1] - 2),0,tl / 3,[225, 255, 255],thickness=tf,lineType=cv2.LINE_AA,)class YoLov5TRT(object):"""description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops."""def __init__(self, engine_file_path):# Create a Context on this device,self.ctx = cuda.Device(0).make_context()stream = cuda.Stream()TRT_LOGGER = trt.Logger(trt.Logger.INFO)runtime = trt.Runtime(TRT_LOGGER)# Deserialize the engine from filewith open(engine_file_path, "rb") as f:engine = runtime.deserialize_cuda_engine(f.read())context = engine.create_execution_context()host_inputs = []cuda_inputs = []host_outputs = []cuda_outputs = []bindings = []for binding in engine:print('bingding:', binding, engine.get_binding_shape(binding))size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_sizedtype = trt.nptype(engine.get_binding_dtype(binding))# Allocate host and device buffershost_mem = cuda.pagelocked_empty(size, dtype)cuda_mem = cuda.mem_alloc(host_mem.nbytes)# Append the device buffer to device bindings.bindings.append(int(cuda_mem))# Append to the appropriate list.if engine.binding_is_input(binding):self.input_w = engine.get_binding_shape(binding)[-1]self.input_h = engine.get_binding_shape(binding)[-2]host_inputs.append(host_mem)cuda_inputs.append(cuda_mem)else:host_outputs.append(host_mem)cuda_outputs.append(cuda_mem)# Storeself.stream = streamself.context = contextself.engine = engineself.host_inputs = host_inputsself.cuda_inputs = cuda_inputsself.host_outputs = host_outputsself.cuda_outputs = cuda_outputsself.bindings = bindingsself.batch_size = engine.max_batch_sizedef infer(self, raw_image_generator):threading.Thread.__init__(self)# Make self the active context, pushing it on top of the context stack.self.ctx.push()# Restorestream = self.streamcontext = self.contextengine = self.enginehost_inputs = self.host_inputscuda_inputs = self.cuda_inputshost_outputs = self.host_outputscuda_outputs = self.cuda_outputsbindings = self.bindings# Do image preprocessbatch_image_raw = []batch_origin_h = []batch_origin_w = []batch_input_image = np.empty(shape=[self.batch_size, 3, self.input_h, self.input_w])for i, image_raw in enumerate(raw_image_generator):input_image, image_raw, origin_h, origin_w = self.preprocess_image(image_raw)batch_image_raw.append(image_raw)batch_origin_h.append(origin_h)batch_origin_w.append(origin_w)np.copyto(batch_input_image[i], input_image)batch_input_image = np.ascontiguousarray(batch_input_image)# Copy input image to host buffernp.copyto(host_inputs[0], batch_input_image.ravel())start = time.time()# Transfer input data to the GPU.cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)# Run inference.context.execute_async(batch_size=self.batch_size, bindings=bindings, stream_handle=stream.handle)# Transfer predictions back from the GPU.cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)# Synchronize the streamstream.synchronize()end = time.time()# Remove any context from the top of the context stack, deactivating it.self.ctx.pop()# Here we use the first row of output in that batch_size = 1output = host_outputs[0]# Do postprocessfor i in range(self.batch_size):result_boxes, result_scores, result_classid = self.post_process(output[i * LEN_ALL_RESULT: (i + 1) * LEN_ALL_RESULT], batch_origin_h[i], batch_origin_w[i])# Draw rectangles and labels on the original imagefor j in range(len(result_boxes)):box = result_boxes[j]plot_one_box(box,batch_image_raw[i],label="{}:{:.2f}".format(categories[int(result_classid[j])], result_scores[j],),)return batch_image_raw, end - startdef destroy(self):# Remove any context from the top of the context stack, deactivating it.self.ctx.pop()def get_raw_image(self, image):"""description: Read an image from image path"""# for img_path in image_path_batch:# yield cv2.imread(img_path)yield imagedef get_raw_image_zeros(self, image_path_batch=None):"""description: Ready data for warmup"""for _ in range(self.batch_size):yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8)def preprocess_image(self, raw_bgr_image):"""description: Convert BGR image to RGB,resize and pad it to target size, normalize to [0,1],transform to NCHW format.param:input_image_path: str, image pathreturn:image: the processed imageimage_raw: the original imageh: original heightw: original width"""image_raw = raw_bgr_imageh, w, c = image_raw.shapeimage = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)# Calculate widht and height and paddingsr_w = self.input_w / wr_h = self.input_h / hif r_h > r_w:tw = self.input_wth = int(r_w * h)tx1 = tx2 = 0ty1 = int((self.input_h - th) / 2)ty2 = self.input_h - th - ty1else:tw = int(r_h * w)th = self.input_htx1 = int((self.input_w - tw) / 2)tx2 = self.input_w - tw - tx1ty1 = ty2 = 0# Resize the image with long side while maintaining ratioimage = cv2.resize(image, (tw, th))# Pad the short side with (128,128,128)image = cv2.copyMakeBorder(image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, None, (128, 128, 128))image = image.astype(np.float32)# Normalize to [0,1]image /= 255.0# HWC to CHW format:image = np.transpose(image, [2, 0, 1])# CHW to NCHW formatimage = np.expand_dims(image, axis=0)# Convert the image to row-major order, also known as "C order":image = np.ascontiguousarray(image)return image, image_raw, h, wdef xywh2xyxy(self, origin_h, origin_w, x):"""description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-rightparam:origin_h: height of original imageorigin_w: width of original imagex: A boxes numpy, each row is a box [center_x, center_y, w, h]return:y: A boxes numpy, each row is a box [x1, y1, x2, y2]"""y = np.zeros_like(x)r_w = self.input_w / origin_wr_h = self.input_h / origin_hif r_h > r_w:y[:, 0] = x[:, 0] - x[:, 2] / 2y[:, 2] = x[:, 0] + x[:, 2] / 2y[:, 1] = x[:, 1] - x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2y[:, 3] = x[:, 1] + x[:, 3] / 2 - (self.input_h - r_w * origin_h) / 2y /= r_welse:y[:, 0] = x[:, 0] - x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2y[:, 2] = x[:, 0] + x[:, 2] / 2 - (self.input_w - r_h * origin_w) / 2y[:, 1] = x[:, 1] - x[:, 3] / 2y[:, 3] = x[:, 1] + x[:, 3] / 2y /= r_hreturn ydef post_process(self, output, origin_h, origin_w):"""description: postprocess the predictionparam:output: A numpy likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...] origin_h: height of original imageorigin_w: width of original imagereturn:result_boxes: finally boxes, a boxes numpy, each row is a box [x1, y1, x2, y2]result_scores: finally scores, a numpy, each element is the score correspoing to boxresult_classid: finally classid, a numpy, each element is the classid correspoing to box"""# Get the num of boxes detectednum = int(output[0])# Reshape to a two dimentional ndarraypred = np.reshape(output[1:], (-1, LEN_ONE_RESULT))[:num, :]pred = pred[:, :6]# Do nmsboxes = self.non_max_suppression(pred, origin_h, origin_w, conf_thres=CONF_THRESH, nms_thres=IOU_THRESHOLD)result_boxes = boxes[:, :4] if len(boxes) else np.array([])result_scores = boxes[:, 4] if len(boxes) else np.array([])result_classid = boxes[:, 5] if len(boxes) else np.array([])return result_boxes, result_scores, result_classiddef bbox_iou(self, box1, box2, x1y1x2y2=True):"""description: compute the IoU of two bounding boxesparam:box1: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h))box2: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h)) x1y1x2y2: select the coordinate formatreturn:iou: computed iou"""if not x1y1x2y2:# Transform from center and width to exact coordinatesb1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2else:# Get the coordinates of bounding boxesb1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]# Get the coordinates of the intersection rectangleinter_rect_x1 = np.maximum(b1_x1, b2_x1)inter_rect_y1 = np.maximum(b1_y1, b2_y1)inter_rect_x2 = np.minimum(b1_x2, b2_x2)inter_rect_y2 = np.minimum(b1_y2, b2_y2)# Intersection areainter_area = np.clip(inter_rect_x2 - inter_rect_x1 + 1, 0, None) * \np.clip(inter_rect_y2 - inter_rect_y1 + 1, 0, None)# Union Areab1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)return ioudef non_max_suppression(self, prediction, origin_h, origin_w, conf_thres=0.5, nms_thres=0.4):"""description: Removes detections with lower object confidence score than 'conf_thres' and performsNon-Maximum Suppression to further filter detections.param:prediction: detections, (x1, y1, x2, y2, conf, cls_id)origin_h: original image heightorigin_w: original image widthconf_thres: a confidence threshold to filter detectionsnms_thres: a iou threshold to filter detectionsreturn:boxes: output after nms with the shape (x1, y1, x2, y2, conf, cls_id)"""# Get the boxes that score > CONF_THRESHboxes = prediction[prediction[:, 4] >= conf_thres]# Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2]boxes[:, :4] = self.xywh2xyxy(origin_h, origin_w, boxes[:, :4])# clip the coordinatesboxes[:, 0] = np.clip(boxes[:, 0], 0, origin_w - 1)boxes[:, 2] = np.clip(boxes[:, 2], 0, origin_w - 1)boxes[:, 1] = np.clip(boxes[:, 1], 0, origin_h - 1)boxes[:, 3] = np.clip(boxes[:, 3], 0, origin_h - 1)# Object confidenceconfs = boxes[:, 4]# Sort by the confsboxes = boxes[np.argsort(-confs)]# Perform non-maximum suppressionkeep_boxes = []while boxes.shape[0]:large_overlap = self.bbox_iou(np.expand_dims(boxes[0, :4], 0), boxes[:, :4]) > nms_threslabel_match = boxes[0, -1] == boxes[:, -1]# Indices of boxes with lower confidence scores, large IOUs and matching labelsinvalid = large_overlap & label_matchkeep_boxes += [boxes[0]]boxes = boxes[~invalid]boxes = np.stack(keep_boxes, 0) if len(keep_boxes) else np.array([])return boxesclass inferThread(threading.Thread):def __init__(self, yolov5_wrapper, image):threading.Thread.__init__(self)self.yolov5_wrapper = yolov5_wrapperself.image = imagedef run(self):batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image(self.image))# print(batch_image_raw[0].shape)# print((counter / (time.time() - start_time)))# cv2.putText(batch_image_raw[0], "FPS {0}".format(float('%.1f' % (counter / (time.time() - start_time)))),# cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255),# 2)cv2.imshow('img', batch_image_raw[0])# for i, img_path in enumerate(self.image):# parent, filename = os.path.split(img_path)# save_name = os.path.join('output', filename)# # Save image# cv2.imwrite(save_name, batch_image_raw[i])cv2.waitKey(0)class warmUpThread(threading.Thread):def __init__(self, yolov5_wrapper):threading.Thread.__init__(self)self.yolov5_wrapper = yolov5_wrapperdef run(self):batch_image_raw, use_time = self.yolov5_wrapper.infer(self.yolov5_wrapper.get_raw_image_zeros())print('warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000))if __name__ == "__main__":# load custom plugin and enginePLUGIN_LIBRARY = "build/libmyplugins.so"engine_file_path = "build/yolov5s.engine"if len(sys.argv) > 1:engine_file_path = sys.argv[1]if len(sys.argv) > 2:PLUGIN_LIBRARY = sys.argv[2]ctypes.CDLL(PLUGIN_LIBRARY)# load coco labelscategories = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat","traffic light","fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow","elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase","frisbee","skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard","surfboard","tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple","sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch","potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard","cell phone","microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors","teddy bear","hair drier", "toothbrush"]if os.path.exists('output/'):shutil.rmtree('output/')os.makedirs('output/')# a YoLov5TRT instanceyolov5_wrapper = YoLov5TRT(engine_file_path)try:print('batch size is', yolov5_wrapper.batch_size)# image_dir = "images/"# image_path_batches = get_img_path_batches(yolov5_wrapper.batch_size, image_dir)# print(yolov5_wrapper.batch_size) # 1# print(image_path_batches)for i in range(10):# create a new thread to do warm_upthread1 = warmUpThread(yolov5_wrapper)thread1.start()thread1.join()# for batch in image_path_batches:# print('........', batch) # ........ ['images/zidane.jpg']# create a new thread to do inferencecap = cv2.VideoCapture('1.mp4')# start_time = time.time()# counter = 0while True:ret, frame = cap.read()# counter += 1if not ret:breakelse:# thread1 = inferThread(yolov5_wrapper, frame)# thread1.start()# thread1.join()batch_image_raw, use_time = yolov5_wrapper.infer(yolov5_wrapper.get_raw_image(frame))# print(batch_image_raw[0].shape)# print(use_time)print('input one frame cost time->{:.2f}ms, saving into output/'.format(use_time * 1000))cv2.imshow('img', batch_image_raw[0])# counter = 0# start_time = time.time()cv2.waitKey(1)finally:# destroy the instanceyolov5_wrapper.destroy()