正点原子嵌入式linux驱动开发——Linux PWM驱动

PWM是很常用到功能,可以通过PWM来控制电机速度,也可以使用PWM来控制LCD的背光亮度。本章就来学习一下如何在Linux下进行PWM驱动开发。

PWM驱动解析

不在介绍PWM是什么了,直接进入使用。

给LCD的背光引脚输入一个PWM信号,这样就可以通过调整占空比的方式来调整LCD背光亮度了。提高占空比就会提高背光亮度,降低占空比就会降低背光亮度,重点就在于PWM信号的产生和占空比的控制。

设备树下PWM控制器节点

定时器节点

STM32MP157有很多路PWM,这些PWM都是由定时器产生的:

  • TIM1/TIM8:这2个是16位高级定时器,主要用于电机控制。这两个定时器支持PWM型号,每个定时器支持4通道PWM信号。
  • TIM2/TIM3/TIM4/TIM5:这4个是通用定时器,TIM3/TIM4是16位定时器,TIM2/TIM5是32位定时器。这4个定时器也支持PWM输出,每个定时器支持4通道PWM信号。
  • TIM12/TIM13/TIM14:这3个都是16 位的通用定时器,TIM12支持2通道的PWM信号,TIM13/TIM14这两个定时器每个只支持1个通道的PWM信号。
  • TIM15/TIM16/TIM17:这3个也都是16位的通用定时器,TIM15支持2通道的PWM信号,TIM16/TIM17每个定时器支持1通道的PWM信号。

可以看出,STM32MP157的PWM通道非常多,不同的PWM通道功能也不同,可以
根据实际情况选择合适的PWM通道。本节使用PA10这个引脚来实现PWM功能,注意!PA10这个引脚被用作USB的ID引脚,如果所使用的开发板使用了PA10作为USB OTG的ID引脚,那么在做本实验的时候开发板的USB OTG接口不能连接到电脑上!正点原子STM32MP157开发板的USB接口采用TypeC接口,因此没有用到PA10作为ID引脚

打开STM32MP157的数据手册,可以看到PA10可以作为TIM1的通道3

TIM1简介

这里其实可以去看裸机开发的笔记,对TIM1这个高级定时器的介绍,我这边只关注Linux驱动部分。

TIM1设备节点

接下来看一下TIM1的设备树,STM32定时器设备树绑定信息文档为:Documentation/devicetree/bindings/mfd/stm32-timers.txt,简单总结一下定时器节点信息。

1、必须的参数

  • compatible:必须是“st,stm32-timers”。
  • reg:定时器控制器物理寄存器基地址,对于TIM1来说,这个地址为0x44000000,这个可以在STM32MP157的数据手册上找到。
  • clock-names:时钟源名字,设置为“int”。
  • clocks:时钟源。

2、可选的参数

  • resets:复位句柄,用来复位定时器控制器,可以参考文档reset/st,stm32-rcc.txt。
  • dmas:DMA通道,最多7通道的DMA。
  • dma-names:DMA名字列表,必须和“dmas”属性匹配,可选的名字有“ch1”、“ch2”、“ch3”、“ch4”、“up”、 “trig”、“com”。

3、可选的子节点

STM32定时器有多种功能,比如计时、PWM、计数器等,不同的功能需要用不同的子节点来表示,可选子节点有三种,分别对应不同的功能:

  • pwm:pwm子节点描述定时器的PWM功能,关于PWM的详细信息请参考绑定文档pwm/pwm-stm32.txt。
  • timer: timer子节点描述定时器的定时功能,定时相关信息请参考绑定文档iio/timer/stm32-timer-trigger.txt。
  • counter: counter子节点描述定时器的计数功能,相关信息请参考绑定文档counter/stm32-timer-cnt.txt。

了解完定时器的绑定文档以后,来看一下STM32MP157实际的定时器节点,打开stm32mp151.dtsi,找到名为“timers1”的设备节点,这个就是TIM1定时器节点,内容如下:
TIM1节点
第19-23行,TIM1的pwm功能子节点,这个是本小节重点关注的。

PWM设备子节点

通过上面对定时器绑定文档的讲解,知道PWM作为定时器的子节点,这里就来看一下PWM子节点绑定文档:Documentation/devicetree/bindings/pwm/pwm-stm32.txt,简单总结一下PWM子节点属性信息:

  • compatible:必须为“st,stm32-pwm”。
  • pinctrl-names:设置为“default”,也可以添加“sleep”,这样当进入低功耗的时候PWM引脚引入sleep模式。
  • pinctrl-n:PWM引脚pinctrl句柄,用来指定PWM信号输出引脚。
  • #pwm-cells:应该设置为3。

STM32MP157的PWM节点的compatible属性为“st,stm32-pwm”,可以在Linux内核源码中搜索这个字符串找到PWM驱动文件,这个文件为:drivers/pwm/pwm-stm32.c

PWM子系统

Linux内核提供了PWM子系统框架,编写PWM驱动的时候一定要符合这个框架。PWM子系统的核心是pwm_chip结构体,定义在文件include/linux/pwm.h中,定义如下:
pwm_chip结构体
第292行,pwm_ops结构体就是PWM外设的各种操作函数集合,编写PWM外设驱动的时候需要开发人员实现。pwm_ops结构体也定义在pwm.h头文件中,定义如下:
pwm_ops结构体
pwm_ops中的这些函数不一定全部实现,但是配置PWM的函数必须实现,比如apply或者config。第264行的apply函数是最新的PWM配置函数,通过此函数来配置PWM的周期以及占空比,老的内核里面会使用第271行的config函数来配置PWM。其中第271-276行的config、set_polarity、enable和disable都是老版本内核所使用的函数。

PWM子系统驱动的核心初始化pwm_chip结构体,然后向内核注册初始化完成以后的pwm_chip。这里就要用到pwmchip_add函数,此函数定义在drivers/pwm/core.c文件中,函数原型如下:

int pwmchip_add(struct pwm_chip *chip)

函数参数和返回值含义如下:

  • chip:要向内核注册的pwm_chip。
  • 返回值:0,成功;负数,失败。

卸载PWM驱动的时候需要将前面注册的pwm_chip从内核移除掉,这里要用到
pwmchip_remove函数
,函数原型如下:

int pwmchip_remove(struct pwm_chip *chip) 

函数参数和返回值含义如下:

  • chip:要移除的pwm_chip。
  • 返回值:0,成功;负数,失败。

PWM驱动源码解析

简单分析一下Linux内核自带的STM32MP157 PWM驱动,驱动文件是pwm-stm32.c这个文件。打开这个文件,可以看到,这是一个标准的平台设备驱动文件,有如下所示:
STM32MP157 PWM平台驱动
第2行,当设备树PWM节点的compatible属性值为“st,stm32-pwm”的话就会匹配此驱动。

第14行,当设备树节点和驱动匹配以后stm32_pwm_probe函数就会执行。

在看stm32_pwm_probe函数之前先来看下stm32_pwm结构体,这个结构体是ST官方创建的STM32 PWM结构体,这个结构体会贯穿整个PWM驱动。stm32_pwm结构体定义在pwm-stm32.c文件中,结构体内容如下:
stm32_pwm结构体
重点看一下第2行,这是一个pwm_chip结构体成员变量chip,前面说了PWM子系统的核心就是pwm_chip。

stm32_pwm_probe函数如下(有缩减):

示例代码39.1.3.3 stm32_pwm_probe函数 
608 static int stm32_pwm_probe(struct platform_device *pdev) 
609 { 
610     struct device *dev = &pdev->dev; 
611     struct device_node *np = dev->of_node; 
612     struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); 
613     struct stm32_pwm *priv; 
614     int ret; 
615 
616     priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 
617     if (!priv) 
618         return -ENOMEM; 
619 
620     mutex_init(&priv->lock); 
621     priv->regmap = ddata->regmap; 
622     priv->clk = ddata->clk; 
623     priv->max_arr = ddata->max_arr; 
624     priv->chip.of_xlate = of_pwm_xlate_with_flags; 
625     priv->chip.of_pwm_n_cells = 3; 
626
627     if (!priv->regmap || !priv->clk) 
628         return -EINVAL; 
629 
630     ret = stm32_pwm_probe_breakinputs(priv, np); 
631     if (ret) 
632         return ret; 
633 
634     stm32_pwm_detect_complementary(priv); 
635 
636     priv->chip.base = -1; 
637     priv->chip.dev = dev; 
638     priv->chip.ops = &stm32pwm_ops; 
639     priv->chip.npwm = stm32_pwm_detect_channels(priv); 
640 
641     ret = pwmchip_add(&priv->chip); 
642     if (ret < 0) 
643         return ret; 
644 
645     platform_set_drvdata(pdev, priv); 
646 
647     return 0; 
648

第616行,priv是一个stm32_pwm类型的结构体指针变量,这里为其申请内存stm32_pwm结构体有个重要的成员变量chip,chip是pwm_chip类型的。所以这一行就引出了PWM子系统核心部件pwm_chip,稍后的重点就是初始化chip。

第621-625行,初始化priv的各个成员变量,第624和625还初始化了pwm_chip的of_xlate和of_pwm_n_cells这两个成员变量。

第630行,调用stm32_pwm_probe_breakinputs函数来读取“st,breakinput”属性,设置break输入,本章例程用不到。

第634行,调用stm32_pwm_detect_complementary函数来检测是否使能TIM1的互补输出功能。

第636-639行,重点,初始化pwm_chip的各个成员变量,第638行设置pwm_chip的ops函数为stm32pwm_ops,stm32pwm_ops里面包含了PWM的具体操作,稍后重点分析。第639行设置pwm_chip的npwm,也就是设置当前打开多少路PWM。这里直接使用stm32_pwm_detect_channels函数来读取TIM1的CCER寄存器,CCER寄存器的CC1E(bit0)、CC2E(bit4)、CC3E(bit8)和CC4E(bit12)这4个位用于开启TIM1的4通道PWM,如果为1就表示对应的PWM通道打开。所以stm32_pwm_detect_channels函数就会直接读取这4个位来判断对应的PWM通道是否打开。

重点来看一下stm32pwm_ops,定义如下:
stm32pwm_ops操作集合
第487行stm32_pwm_apply_locked就是最终的PWM设置函数,在应用中设置的PWM频率和占空比最终就是由stm32_pwm_apply_locked函数来完成的,此函数会最终操作STM32相关的寄存器。

stm32_pwm_apply_locked函数源码如下:
stm32_pwm_apply_locked函数
第478行,加互斥锁,防止竞争的产生。一次只有一个应用可以设置PWM。

第479行,调用stm32_pwm_apply函数来设置 PWM

stm32_pwm_apply函数内容如下:
stm32_pwm_apply函数
第453行,在设置PWM之前,先调用stm32_pwm_disable函数关闭PWM。

第458行,调用stm32_pwm_set_polarity函数设置指定PWM通道的极性。

第460行,调用stm32_pwm_config来设置PWM的频率以及占空比。

第465行,PWM设置完成以后调用stm32_pwm_enable函数使能PWM。

stm32_pwm_config函数内容如下:

示例代码39.1.3.7 stm32_pwm_config函数 
322 static int stm32_pwm_config(struct stm32_pwm *priv, int ch, 
323                             int duty_ns, int period_ns) 
324 { 
325     unsigned long long prd, div, dty; 
326     unsigned int prescaler = 0; 
327     u32 ccmr, mask, shift; 
328 
329     /* Period and prescaler values depends on clock rate */ 
330     div = (unsigned long long)clk_get_rate(priv->clk) * period_ns; 
331 
332     do_div(div, NSEC_PER_SEC); 
333     prd = div; 
334 
335     while (div > priv->max_arr) { 
336         prescaler++; 
337         div = prd; 
338         do_div(div, prescaler + 1); 
339     } 
340 
341     prd = div; 
342 
343     if (prescaler > MAX_TIM_PSC) 
344         return -EINVAL; 
345 
346     /* 
347      * All channels share the same prescaler and counter so when two
348      * channels are active at the same time we can't change them 
349      */ 
350     if (active_channels(priv) & ~(1 << ch * 4)) { 
351         u32 psc, arr; 
352 
353         regmap_read(priv->regmap, TIM_PSC, &psc); 
354         regmap_read(priv->regmap, TIM_ARR, &arr); 
355 
356         if ((psc != prescaler) || (arr != prd - 1)) 
357             return -EBUSY; 
358     } 
359 
360     regmap_write(priv->regmap, TIM_PSC, prescaler); 
361     regmap_write(priv->regmap, TIM_ARR, prd - 1); 
362     regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE); 
363 
364     /* Calculate the duty cycles */ 
365     dty = prd * duty_ns; 
366     do_div(dty, period_ns); 
367 
368     write_ccrx(priv, ch, dty); 
369 
370     /* Configure output mode */ 
371     shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; 
372     ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; 
373     mask = CCMR_CHANNEL_MASK << shift; 
374 
375     if (ch < 2) 
376         regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); 
377     else 
378         regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); 
379 
380     regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE); 
381 
382     return 0; 
383 }

PWM的设置主要就是两方面:频率和占空比。第330~362行都是设置PWM频率的,函数参数period_ns为周期值,也就是PWM的频率。TIM的PSC寄存器用来设置定时器分频值,当TIM时钟源确定以后,设置PSC分频值即可得到TIM最终的时钟频率。TIM的ARR寄存器是自动加载寄存器,将TIM设置为向下计数器,定时器开启以后每个时钟周期,计数器减一,直到计数器减为0。这个时候再将ARR里面的值加载到计数器里面,计数器就会重新开始倒计时,如此一直重复。因此PSC和ARR这两个寄存器就决定了PWM的周期值要注意!由于一个定时器有4通道的 PWM,而这4路PWM只能设置成同一个周期,如果想要多路周期不同的PWM信号,那就要使用多个不同的TIM!

第365-380行,设置PWM的占空比,参数duty_ns表示占空比。一个定时器下的4路PWM可以设置不同的占空比,相当于一个定时器下的4路PWM信号,周期是一样的,但是占空比可以不同。占空比的设计原理比较简单,前面我们已经知道当定时器时钟频率确定以后(PSC分频值不变),ARR寄存器里面的值就决定了PWM周期,这个数值就叫比较值,改变比较值就可以改变PWM的占空比。STM32MP157一个定时器有4路PWM通道,每个通道都有个用来存放比较值的寄存器,因此一共有4个寄存器CCR1-CCR4,这4个寄存器就叫做比较寄存器。所以第365、366行就是根据参数duty_ns算出对应的CCRx(x=1~4)寄存器对应的值,然后在368行通过write_ccrx函数将相应的值写入到对应的
CCRx寄存器里面。

第371-378行是设置PWM输出模式,通道1和通道2使用CCMR1寄存器,通道3和通道4使用CCMR2寄存器。最后的380行设置BDTR寄存器,这个寄存器是break和死区控制相关的,本章用不到。

至此,STM32MP157的PWM驱动就分析完了。

PWM驱动编写

修改设备树

PWM驱动就不需要再编写了,ST已经写好了,前面也已经详细的分析过这个驱动源码了。在实际使用的时候只需要修改设备树即可(这个可以类比裸机开发用HAL库),STM32MP157开发板上的JP1排针引出了 PA10这个引脚,如下图所示:
PA10引脚
PA10可以作为TIM1的通道3的PWM输出引脚,所以需要在设备树里面添加PA10的引脚信息以及TIM1通道3的PWM信息

添加PA10引脚信息

打开stm32mp15-pinctrl.dtsi文件,在iomuxc节点下添加GPIO1_IO04的引脚信息,如下所示:

示例代码39.2.1.1 TIM1 PWM引脚信息 
1  pwm1_pins_a: pwm1-0 { 
2      pins { 
3          pinmux = <STM32_PINMUX('E', 9, AF1)>, /* TIM1_CH1 */ 
4                   <STM32_PINMUX('E', 11, AF1)>, /* TIM1_CH2 */ 
5                   <STM32_PINMUX('E', 14, AF1)>; /* TIM1_CH4 */ 
6          bias-pull-down; 
7          drive-push-pull; 
8          slew-rate = <0>; 
9      }; 
10 }; 
11 
12 pwm1_sleep_pins_a: pwm1-sleep-0 { 
13     pins { 
14         pinmux = <STM32_PINMUX('E', 9, ANALOG)>, /* TIM1_CH1 */ 
15                  <STM32_PINMUX('E', 11, ANALOG)>, /* TIM1_CH2 */ 
16                  <STM32_PINMUX('E', 14, ANALOG)>; /* TIM1_CH4 */ 
17     }; 
18 };

可以看出ST官方已经设置好了TIM1的CH1、CH2和CH4这三个通道的引脚配置,但是这里只需要CH3,因此将示例代码29.2.1.1改成如下所示:

示例代码39.2.1.2 PA10引脚配置 
1  pwm1_pins_a: pwm1-0 { 
2      pins { 
3          pinmux = <STM32_PINMUX('A', 10, AF1)>; /* TIM1_CH3 */ 
4          bias-pull-down; 
5          drive-push-pull; 
6          slew-rate = <0>; 
7      }; 
8  }; 
9 
10 pwm1_sleep_pins_a: pwm1-sleep-0 { 
11     pins { 
12         pinmux = <STM32_PINMUX('A', 10, ANALOG)>; /* TIM1_CH3 */ 
13     }; 
14 };

示例代码39.2.1.2中仅仅将PA10复用为TIM1的CH3,一定要根据自己所使用的板子硬件来配置引脚。

向timer1节点追加信息

stm32mp151.dtsi文件中已经有了“timers1”节点,但是这个节点默认是disable的,而且还不能直接使用。需要在stm32mp157d-atk.dts文件中向timers1节点追加一些内容,在stm32mp157d-atk.dts文件中加入如下所示内容:

示例代码39.2.1.3 向timers1添加的内容 
1  &timers1 { 
2      status = "okay"; 
3      /* spare all DMA channels since they are not needed for PWM output */ 
4      /delete-property/dmas; 
5      /delete-property/dma-names; 
6      pwm1: pwm { 
7          pinctrl-0 = <&pwm1_pins_a>; 
8          pinctrl-1 = <&pwm1_sleep_pins_a>; 
9          pinctrl-names = "default", "sleep"; 
10         #pwm-cells = <2>; 
11         status = "okay"; 
12     }; 
13 };

第 4、5行,关闭DMA功能,因为PWM输出不需要DMA。

第7行,pinctrl-0属性指定TIM1的CH3所使用的输出引脚对应的pinctrl节点,这里设置
为示例代码39.2.1.2中的pwm1_pins_a。

屏蔽其他复用的IO

检查一下设备树中有没有其他外设用到PA10,如果有的话需要屏蔽掉!注意,不能只屏蔽掉PA10的 pinctrl配置信息,也要搜索一下“gpioa 10”,看看有没有哪里用到,用到的话也要屏蔽掉

设备树修改完成后重新编译设备树,然后使用新的设备树启动系统。

使能PWM驱动

ST官方的Linux内核已经默认使能了PWM驱动,所以不需要修改,但是为了学习,还是需要知道怎么使能。打开Linux内核配置界面,按照如下路径找到配置项:

-> Device Drivers
-> Pulse-Width Modulation (PWM) Support
-> <*> STMicroelectronics STM32 PWM //选中

配置如下图所示:
PWM配置项

PWM驱动测试

确定TIM1对应的pwmchipX问价

使用新的设备树启动系统,然后将开发板上的PA10引脚连接到示波器上,通过示波器来查看PWM波形图。可以直接在用户层来配置PWM,进入目录/sys/class/pwm中,如下图所示:
TIM1对应的PWM
注意!上图中有个pwmchip0,但是并不知道这个pwmchip0是否为TIM1对应的文件。可以通过查看pwmchip0对应的地址是否和TIM1定时器寄存器起始地址是否一致来确定其是否属于TIM1。进入到pwmchip0目录下,会打印出其路径:
pwmchip0路径名称
从上图可以看出pwmchip0对应的定时器寄存器起始地址为0X44000000,根据示例代码39.1.1.1中的timers1节点,可以知道TIM1这个定时器的寄存器起始地址就是0X44000000。因此,pwmchip0就是TIM1对应的文件。

为什么要用这么复杂的方式来确定定时器对应的pwmchip文件呢?因为当STM32MP157开启多个定时器的PWM功能以后,其pwmchip文件就会变!

调出pwmchip0的pwm2子目录

pwmchip0是整个TIM1的总目录,而TIM1有4路PWM,每路都可以独立打开或关闭。CH1-CH4对应的编号为0~3,因此打开TIM1的CH3输入如下命令:

echo 2 > /sys/class/pwm/pwmchip0/export

上述命令中2就是TIM1_CH3,如果要打开TIM1的CH1,那就是0。执行完成会在pwmchip0目录下生成一个名为“pwm2”的子目录,如下图所示:
新生成的pwm2子目录

设置PWM频率

注意,这里设置的是周期值,单位为ns,比如20KHz频率的周期就是50000ns,输入如下命令:

echo 50000 > /sys/class/pwm/pwmchip0/pwm2/period

设置PWM的占空比

这里不能直接设置占空比,而是设置的一个周期的ON时间,也就是高电平时间,比如20KHz频率下20%占空比的ON时间就是10000,输入如下命令:

echo 10000 > /sys/class/pwm/pwmchip0/pwm2/duty_cycle

使能TIM1 CH3

一定要先设置频率和波特率,最后在开启定时器,否则会提示参数错误!输入如下命令使能TIM1的通道3这路PWM:

echo 1 > /sys/class/pwm/pwmchip0/pwm2/enable

设置完成使用示波器查看波形是否正确,正确的话如下图所示:
PWM波形图
从上图可以看出,此时PWM频率为20KHz,占空比为20%,与设置的一致。如果要修改频率或者占空比的话一定要注意这两者时间值,比如20KHz频率的周期值为50000ns,那么在调整占空比的时候ON时间就不能设置大于50000,否则就会提示参数无效。

极性反转

前面也可以修改PWM的极性,上面设置的PWM占空比为20%,只需要修改极性就可以将占空比变为80%。向/pwmchip0/pwm2/polarity文件写入“inversed”即可反转极性,命令如下:

echo "inversed" > /sys/class/pwm/pwmchip0/pwm2/polarity

极性反转以后占空比就变为了80%,如果要恢复回原来的极性,向/pwmchip0/pwm2/polarity文件写入“normal”即可,命令如下:

echo "normal" > /sys/class/pwm/pwmchip0/pwm2/polarity

总结

Linux内核直接修改PWM,只需要在pinctrl和设备树中添加相应的内容即可。

在stm32mp15-pinctrl.dtsi中,在iomuxc节点下,找到本次实验中使用的TIM1的复用,就是pwm1_pins_a和pwm1_sleep_pins_a节点,添加电气属性内容。

在stm32mp157d-atk.dts中,向&timer1追加内容,把status置为“okay”使能,然后把pinctrl加入即可。

最后就可以通过在/sys/class/pwm里面对应的pwmchip文件中,在./export通过“echo”命令打开对应的PWM输出,在./period设置频率和在./duty_cycle设置占空比;最后在./enable中“echo 1”打开PWM输出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/121113.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记一次企业微信的(CorpID)和密钥(Secret)泄漏的利用案例

文章目录 一、介绍二、利用过程1、获取AccessToken2、获取企业微信接口IP段3、获取企业微信回调IP段4、通过部门ID,查看返回的ID5、通过部门ID,查看用户列表6、通过便利ID,发现用户信息泄露,可以进行提交报告7、通过添加接口,添加企业账号8、登陆企业账号进行测试三、参考…

【随机过程】布朗运动

这里写目录标题 Brownian motion Brownian motion The brownian motion 1D and brownian motion 2D functions, written with the cumsum command and without for loops, are used to generate a one-dimensional and two-dimensional Brownian motion, respectively. 使用cu…

主动调度是如何发生的

计算机主要处理计算、网络、存储三个方面。计算主要是 CPU 和内存的合作&#xff1b;网络和存储则多是和外部设备的合作&#xff1b;在操作外部设备的时候&#xff0c;往往需要让出 CPU&#xff0c;就像上面两段代码一样&#xff0c;选择调用 schedule() 函数。 上下文切换主要…

Kafka - 3.x 图解Broker总体工作流程

文章目录 Zk中存储的kafka的信息Kafka Broker总体工作流程1. broker启动后向zk中注册2. Controller谁先启动注册&#xff0c;谁说了算3. 由选举出来的Controller监听brokers节点的变化4. Controller决定leader选举5. Controller将节点信息上传到Zk中6. 其他Controller从zk中同步…

Fourier分析导论——第1章——Fourier分析的起源(E.M. Stein R. Shakarchi)

第 1 章 Fourier分析的起源 (The Genesis of Fourier Analysis) Regarding the researches of dAlembert and Euler could one not add that if they knew this expansion, they made but a very imperfect use of it. They were both persuaded that an arbitrary and d…

jenkins配置gitlab凭据

下载Credentials Binding插件&#xff08;默认是已经安装了&#xff09; 在凭据配置里添加凭据类型 点击保存 Username with password&#xff1a; 用户名和密码 SSH Username with private 在凭据管理里面添加gitlab账号和密码 点击全局 点击添加凭据&#xff08;版本不同…

Go RESTful API 接口开发

文章目录 什么是 RESTful APIGo 流行 Web 框架-GinGo HelloWorldGin 路由和控制器Gin 处理请求参数生成 HTTP 请求响应Gin 的学习内容实战用 Gin 框架开发 RESTful APIOAuth 2.0接口了解用 Go 开发 OAuth2.0 接口示例 编程有一个准则——Don‘t Repeat Yourself&#xff08;不要…

如何在Windows和Linux系统上监听文件夹的变动?

文章目录 如何在Windows和Linux系统上监听文件夹的变动&#xff1f;读写文件文件系统的操作缓冲和流文件改变事件 如何在Windows和Linux系统上监听文件夹的变动&#xff1f; libuv库实现了监听整个文件夹的修改。本文详细介绍libuv库文件读写和监听的的实现方法。libuv库开发了…

Unity的碰撞检测(六)

温馨提示&#xff1a;本文基于前一篇“Unity的碰撞检测(五)”继续探讨两个游戏对象具备刚体的BodyType均为Dynamic&#xff0c;但是Collision Detection属性不同的碰撞检测&#xff0c;阅读本文则默认已阅读前文。 &#xff08;一&#xff09;测试说明 在基于两个游戏对象都具…

TSINGSEE青犀省级高速公路视频上云联网方案:全面实现联网化、共享化、智能化

一、需求背景 随着高速铁路的建设及铁路管理的精细化&#xff0c;原有的模拟安防视频监控系统已经不能满足视频监控需求&#xff0c;越来越多站点在建设时已开始规划高清安防视频监控系统。高速公路视频监控资源非常丰富&#xff0c;需要对其进行综合管理与利用。通过构建监控…

荣电集团与钕希科技签署全面战略合作

10月26日&#xff0c;荣电集团&#xff08;以下简称荣电&#xff09;与钕希科技南京有限公司&#xff08;以下简称钕希科技&#xff09;今天在合肥市签署全面战略合作协议&#xff0c;联合进军混合现实&#xff08;Mixed Reality&#xff0c;以下简称MR&#xff09;空间计算高科…

Java练习题2021-4

"某游戏公司设计了一个奖励活动&#xff0c;给N个用户(1≤N≤10^7)连续编号为1到N&#xff0c;依据用户的编号S发放奖励。 发放奖励规则为&#xff1a; 公司随机设定三个非零正整数x&#xff0c;y&#xff0c;z。 如果S同时是x、y的倍数&#xff0c;奖励2张卡片&#xff1…

如何绘制【逻辑回归】中threshold参数的学习曲线

threshold参数的意义是通过筛选掉低于threshold的参数&#xff0c;来对逻辑回归的特征进行降维。 首先导入相应的模块&#xff1a; from sklearn.linear_model import LogisticRegression as LR from sklearn.datasets import load_breast_cancer from sklearn.model_selecti…

内核进程的调度与进程切换

进程被创建到了链表中&#xff0c;如何再进行进一步的调用和调用&#xff1f; 进程调度 void schedule(void)&#xff1b; 进程调度 switch_to(next); 进程切换函数 void schedule(void) {int i,next,c;struct task_struct ** p;/* check alarm, wake up any i…

nginx配置反向代理和动静分离应用

一. Nginx配置反向代理和实现动静分离与虚拟主机流程图&#xff1a; 二 .Nginx配置反向代理和实现动静分离与虚拟主机实现详细配置和效果图 2.1 nginx 配置反向代理 #在nginx.conf配置server同级下配置 include tomcat.conf# vim tomcat.conf upstream api.z.mukewang.com{…

mac 查看GPU使用

首先搜索活动监视器 然后 点击窗口->gpu历史记录 记住不是立马出结果&#xff0c;而是 需要等半分钟左右的

PS笔记2_钢笔工具的形状和路径

本文目录 前言Step 1 形状的用法&#xff1a;画图Step 2 路径的用法&#xff1a;抠图 前言 当我们在PS中选择钢笔工具时&#xff0c;上方功能栏中可以选择钢笔的功能项&#xff0c;有三种选项&#xff1a;形状&#xff0c;路径和像素。最常用的就是“形状”和“路径”。本博文…

Hadoop3.0大数据处理学习4(案例:数据清洗、数据指标统计、任务脚本封装、Sqoop导出Mysql)

案例需求分析 直播公司每日都会产生海量的直播数据&#xff0c;为了更好地服务主播与用户&#xff0c;提高直播质量与用户粘性&#xff0c;往往会对大量的数据进行分析与统计&#xff0c;从中挖掘商业价值&#xff0c;我们将通过一个实战案例&#xff0c;来使用Hadoop技术来实…

安全狗安装

安装waf 关闭apache程序及httpd.exe进程; 运行cmd&#xff0c;cd进入apache/bin文件夹目录&#xff0c; 执行httpd.exe -k install -n apache2.4.39; 启动apache,启动phpstudy 安全狗安装服务名称填写apache2.4.39; 安装安全狗之后就会提示报错 网站防护 可以设备黑白名单 漏…

ubuntu 22.04安装百度网盘

百度网盘 客户端下载 (baidu.com) 下载地址 sudo dpkg -i baidunetdisk_4.17.7_amd64.deb