【网络原理】 (1) (应用层 传输层 UDP协议 TCP协议 TCP协议段格式 TCP内部工作机制 确认应答 超时重传 连接管理)

文章目录

  • 应用层
  • 传输层
    • UDP协议
    • TCP协议
      • TCP协议段格式
      • TCP内部工作机制
        • 确认应答
        • 超时重传


网络原理部分我们主要学习TCP/IP协议栈这里的关键协议(TCP 和 IP),按照四层分别介绍.(物理层,我们不涉及).

应用层

我们需要学会自定义一个应用层协议.

自定义协议的原因?

当前的软件(应用程序)要解决的业务场景是错综复杂的,业务复杂,使用程序来解决这个复杂的业务,程序也就复杂了.因此很难有一个通用的协议满足所有的业务需求.

怎样去进行自定义协议?

  1. 结合需求,分析清楚,请求响应(客户端/服务器之间)要传递哪些信息.
  2. 明确传递的信息以什么样的格式来组织.约定好具体格式内容后,客户端就能够按照这个格式构造数据并发送,服务器按照这个格式解析处理.约定的协议的内容(传递的信息)是和业务相关性特别大的.但是协议的数据组织的格式(传递格式),和业务相关性没那么大.因此针对上述这个组织数据的格式,业界一些大佬发明了一些比较通用的的数据格式.
    (1)XML:标签化的数据组织方式,使用标签来表示键值对,以及树形结构.
    在这里插入图片描述
    (2) json:最初是出自于 js这个语言.格式比XML简单明了一些.
    在这里插入图片描述
    上述xml和json都是按照文本的方式来组织的.优点,可读性好,用户不需要借助其他工具,肉眼就能看懂数据的含义.缺点,效率不高,尤其是占用较多的网络带宽.xml中要额外传很多标签,json中要传很多的key.对应服务器来说,网络带宽是很贵的硬件资源.于是就有了下面的方式.
    (3)protobuf(谷歌)它是一种二进制的表示数据的方式,针对对上述数据信息,通过二进制的方式进行压缩表示.特定:肉眼观察不了(二进制,直接用记事本打开是乱码)但是占用空间小了,传输的带宽也就降低了.

传输层

传输层虽然是操作系统内核已经实现好了,但是我们需要调用系统的socket api完成网络编程的。socket就是属于传输层的部分。

端口号

端口号起到效果就是区分一个主机上具体的应用程序的。因此我们要求在同一个主机上,一个端口号不能被多个进程绑定。

端口号是传输层协议的概念,TCP和UDP协议报头中都会包含 源端口和目的端口。TCP和UDP都是使用2个字节,16个bit位来表示的.即一个端口号的取值范围:0-65535.但是我们自己写程序绑定的端口,得从1024起,因为0-1023这个范围的端口称为"知名端口号/具体端口号",这些端口号是属于已经分配给一些知名的广泛使用的应用程序了.

在这里插入图片描述

UDP协议

基本特点:无连接,不可靠,面向数据报,全双工.
UDP协议报文结构:
在这里插入图片描述

在这里插入图片描述

UDP就会把载荷数据(就是通过UDPsocket,也就是send方法拿来的数据,基础上再在前面拼装上几个字节的报头).
UDP报头里就包含了一些特定的属性,也就携带了一些重要的信息.不同的协议,功能不同,报头中带有的属性信息就不同,对于UDP来说报头一共就是8个字节,分为四个部分(每个部分2个字节).
一次网络通信,设计到五元组:源IP ,源端口,目的IP ,目的端口 ,协议类型.
UDP报文长度也是2个字节表示的,2个字节的表示范围:0->65535,换算单位64KB.一共UDP数据报最大只能传输64KB的数据.

如果应用层数据报超过64KB了怎么办?

  1. 在应用层通过代码的方式针对应用层数据报进行手动分包,拆成多个包通过多个UDP数据报进行传输.(本来send一次,现在需要send多次了)
  2. 不用UDP,缓存TCP(TCP没有这样的限制)

校验和:是验证传输的数据是否是正确的.

在网络传输过程中,可能会受到一些干扰,在这些干扰下就可能出现"比特翻转"的情况(1变0,0变1)一旦数据变了,对于数据的含义可能就是致命的,程序中经常使用1表示某个功能开始,0表示某个功能关闭,本来网络数据报是想开启功能,结果因为翻转,导致变成了关闭.因此引入了校验和来进行鉴别.
校验和:针对数据内容进行一系列的数学运算,得到一个比较短的结果(如2字节),如果数据内容一定,得到的校验和的结果就一定,数据变了,校验和也就变了.
在这里插入图片描述
针对网络传输的数据来说,生成校验和的算法有很多,比如:

  1. CRC:循环冗余校验,把数据的每个字节循环网上累加.如果累加移除了,高位就不要了.好算,但是校验效果不是特别理想.万一数据同时变了两个bit位(前一个字节少1,后一个字节多1),就会出现内容变了,CRC没变的情况.
  2. MD5:本质是用一系列公式来进行更复杂的数学运算.MD5算法特点:(1)定长:无论原始数据多长,得到的MD5都是固定长度.(4字节版本和8字节版本)(2)冲突概率小,原始数据哪怕只变动一个地方,算出来的MD5值都会差别很大.(让MD5结果更分散了)(3)不可逆,通过原始数据计算MD5很容易,通过MD5还原成原始数据很难,理论上是不可实现的.
  3. SHA1

TCP协议

TCP协议相比于UDP复杂不少,它是有连接,可靠传输,面向字节流,全双工.

TCP协议段格式

在这里插入图片描述

TCP内部工作机制

深度理解掌握TCP提供10个核心的机制:

确认应答

TCP可靠传输,可靠并不是说发送方100%能把消息发送给接收方(毕竟网线断了是不可能发过去的).确认应答就是实现可靠传输的最核心机制.TCP进行可靠性传输,最主要就是靠的这个确认应答机制.A给B发了个消息,B收到之后就会返回一个应答报文(ACK),此时A收到应答之后,就知道了刚才发的数据已经顺利到达B了.

考虑更复杂的情况.网络中数据后发先至,两个主机之间,路线存在多条,数据报1和数据报2走的都是不同的路线…数据报1和数据报2转发路径上的路由器/交换机不一样,有的转发速率快,有的慢,此时两个数据报到达的顺序就更存在变数了.
结论:网络先发后至的这个现象是客观存在的,无法避免.因此应答报文的到达顺序也是可能发生变动的.此时就考虑如何规避这种顺序错乱带来的歧义.

如果解决上述后发先至的问题?

给传输的数据和应答报文都进行编号就可以了.当我们引入序号之后,就不怕顺序乱了.即使顺序上乱了,也可以通过序号来区分当前应答报文是针对哪个数据进行的.任何一条数据(包括应答报文)都是有序号的,确认序号则是只有应答报文有.(普通报文确认序号字段里的值无意义).这一条报文是否是应答报文,取决于ACK标志位.如果ACK这个标志位为1则是应答报文,为0就不是应答报文.
在这里插入图片描述
实际上TCP的序号并不是按照"一条两条"这样的方式来编号的.TCP是面向字节流的.TCP的序号也是按照字节来编号的.
在这里插入图片描述
TCP的字节的序号是依次累加的,这个依次累加的过程对于后一条数据来说,起始字节的序号就是上一个数据的最后一个字节的序号.每个TCP数据报报头填写的序号只需要写TCP数据的头一个字节的序号即可.TCP知道了头一个字节的序号,再根据TCP报文长度,就很容易知道每个字节的序号.

确认序号的取值是收到的数据的最后一个字节的序号+1.

小结:TCP可靠传输能力,最主要是通过确认应答机制来保证的.通过应答报文,就可以让发送方清楚的知道传输是否成功.进一步的引入了序号和确认序号,针对多组数据进行详细的区分.

超时重传

超时重传:超过一定时间,还没响应,就重新传输.

我们在讨论确认应答的时候,只是讨论了顺利传输的情况.如果丢包了,我们还得再来考虑.

丢包涉及到两种情况:

  1. 发的数据丢了;
  2. 返回的ack丢了.

发送方看到的结果就是没有收到ack,区分不了是哪种情况,所以上面的两种情况会一视同仁,都认为是丢包了.此时TCP没有躺平,还是要尽力挽救一下的.(丢包是一个概率性时间,通常情况下丢包的概率是比较小的,因此如果重新发一下这个数据报,其实还是有很大的概率成功传输的).
TCP就引入了重传机制,在丢包的时候,就重新再发一次同样的数据.但是我们还是要区分到底是丢包了,还是ack走的满,在路上呢?此时TCP直接引入了一个时间阈值.发送方发了一个数据之后,就会等待ACK,此时开始计时.如果在时间阈值之内也没有收到ACK,那么就不管ACK是在路上,还是彻底丢了,都视为丢包了.
在这里插入图片描述
TCP对于这种重复数据的传输是有特殊处理,去重.TCP存在一个"接收缓冲区"这样的存储空间(接收方操作系统内核里的一段内存).每个TCP的socket对象,都有一个接收缓冲区(也有一个发送缓冲区).主机B收到主机A的数据,是B的网卡读到数据了,然后把这个数据放到B的对应socket的接收缓冲区中,后续应用程序使用getInputStream进一步的使用read,就是从接收缓冲区来读数据.(根据数据的序号,TCP很容易识别当前接收缓冲区里的这两条数据是否重复.如果重复就把后来的这份数据丢弃.保证应用程序调用read读取到的数据一定是不重复的).

小结:由于去重和重新排序机制的存在,发送方只要发现ACK没有按时到达,就会重传数据.即使重复了,即使数据乱了,都没事,接收方都能很好的处理.(去重和排序都依赖TCP报头的序号).

站在数学角度看多次重传丢包的情况:假设一次传输丢包概率是10%,传输成功的概率是90%,如果第一次传输丢包了,第二次重传也丢包了,概率是10%*10% = 1%,三次都丢了的概率是0.1%,连续重传都丢包,此时的概率原则上讲,是非常低的.如果这个情况真的出现了,只能说明此时丢包的概率远远不止10%,即当前网络出现重大故障.因此当重传到一定次数的时候,就不会再继续重传了,此时会认为是网络出现故障.接下来TCP会尝试重置连接(相当于断开重连),如果重置还是失败,就彻底断开连接了.

小结:可靠传输是TCP最核心的部分,TCP的可靠传输就是通过确认应答 + 超时重传 来体现的,其中确认应答描述的是传输顺利的情况,超时重传描述的是传输出现问题的情况.这两者相互配合,共同支撑整体的TCP可靠性.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12069.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JAVASE】顺序和选择结构

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈Java 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 顺序和选择 1. 顺序结构2. 分支结构2.1 …

Ubuntu18.04 下配置Clion

配置Clion 安装gcc、g、make Ubuntu中用到的编译工具是gcc©,g(C),make(连接)。因此只需安装对应的工具包即可。Ubuntu下使用命令安装这些包: (1)安装gcc sudo apt install gcc&am…

解决Cannot resolve plugin org.apache.maven.plugins:xxxxxxxx

解决Cannot resolve plugin org.apache.maven.plugins:xxxxxxxx 方法一、检查配置设置 下图中三个方框圈出来的地方设置为自己的下载的maven地址,配置文件地址,仓库地址。刷新maven。 我个人试过没用,不过网上有的朋友用这个方法解决了。 …

Day 69-70:矩阵分解

代码: package dl;import java.io.*; import java.util.Random;/** Matrix factorization for recommender systems.*/public class MatrixFactorization {/*** Used to generate random numbers.*/Random rand new Random();/*** Number of users.*/int numUsers…

FANUC机器人实现2个RO输出信号互锁关联(互补)的具体方法

FANUC机器人实现2个RO输出信号互锁关联(互补)的具体方法 一般情况下,为了方便用户控制工装夹具上的电磁阀等控制工具,FANUC机器人出厂时给我们提供了8个RO输出信号,如下图所示,这8个RO信号可以各自单独使用。 那么,如果为了安全控制,需要将2个RO信号成对的进行安全互锁…

linux服务器安装redis

一、安装下载 下载安装参考文章 下载安装包地址:https://download.redis.io/releases/ 亲测有效,但是启动的步骤有一些问题 安装完成!!! 二、启动 有三种启动方式 默认启动指定配置启动开机自启 说明&#xff1a…

下载JMeter的历史版本——个人推荐5.2.1版本

官网地址:https://archive.apache.org/dist/jmeter/binaries/

JVM-提问纯享版

一、内存区域 介绍下 Java 内存区域(运行时数据区)内存分配方式内存分配并发问题对象的访问定位的两种方式(句柄和直接指针两种方式) 二、垃圾回收 如何判断对象是否死亡(两种方法)。简单的介绍一下强引…

POI 导出 树形结构

参考文章:(327条消息) Excel树状数据绘制导出_excel导出树形结构_Deja-vu xxl的博客-CSDN博客https://blog.csdn.net/weixin_45873182/article/details/120132409?spm1001.2014.3001.5502 Overridepublic void exportPlus(String yearMonth, HttpServletRequest re…

【C语言】从零开始学习数组

🍁 博客主页:江池俊的博客 💫收录专栏:C语言——探索高效编程的基石 💻 其他专栏:数据结构探索 💡代码仓库:江池俊的代码仓库 🎪 社区:C/C之家社区 🍁 如果觉…

【C++ 进阶】学习导论:C/C++ 进阶学习路线、大纲与目标

目录 一、C 学习路线 二、C 课程大纲与学习目标 (1)第一阶段:C 语言基础 (2)第二阶段:C 高级编程 (3)第三阶段:C 核心编程与桌面应用开发 (4&#xf…

网络安全领域关键信息泄露事件引发关注

近日,一家知名网络安全公司发布了一份报告揭露了一起重大信息泄露事件。据称,该事件涉及大量敏感用户数据的泄露引发了全球网络安全领域的广泛关注。 根据报道,该事件发生在全球范围内涉及多个国家和组织。专家指出,此次泄露事件…

深入学习 Redis - 深挖经典数据类型之 zset

目录 前言 一、zset 类型 1.1、操作命令 zadd / zrange(添加 / 查询) zcard(个数) zcount(区间元素个数) zrevrange(逆序展示) zrangebyscore(按分数找元素&#…

【UE5 多人联机教程】06-显示玩家名称

效果 可以看到玩家输入各自的名称,会显示到自己控制的角色头上。但是目前有一个BUG就是,当客户端加入游戏时会多创建一个服务端的角色。 步骤 1. 打开“BP_ThirdPersonCharacter”,添加一个控件组件,用于显示玩家名称 作为网格体…

内存函数讲解

&#x1f495;"痛苦难以避免&#xff0c;而磨难可以选择。"-->村上春树&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;数据在内存中的存储 内存函数就是管理内存数据的函数&#xff0c;包含于头文件<string.h>中 1.memcpy函数-->内存…

Jenkins插件管理切换国内源地址

一、替换国内插件下载地址 选择系统管理–>插件管理–> Available Plugins 并等待页面完全加载完成、这样做是为了把jenkins官方的插件列表下载到本地、接着修改地址文件、替换为国内插件地址 进入插件文件目录 cd /var/lib/jenkins/updatesdefault.json 为插件源地址…

tinymce实现将word中内容(文字图片等)直接粘贴至编辑器中——利用插件tinymce-powerpaste-plugin

TinyMCE是一款易用、且功能强大的所见即所得的富文本编辑器。同类程序有&#xff1a;UEditor、Kindeditor、Simditor、CKEditor、wangEditor、Suneditor、froala等等。 TinyMCE的优势&#xff1a; 开源可商用&#xff0c;基于LGPL2.1 插件丰富&#xff0c;自带插件基本涵盖日常…

给APK签名—两种方式(flutter android 安装包)

前提&#xff1a;给未签名的apk签名&#xff0c;可以先检查下apk有没有签名 通过命令行查看&#xff1a;打开终端或命令行界面&#xff0c;导入包含APK文件的目录&#xff0c;并执行以下命令&#xff1a; keytool -printcert -jarfile your_app.apk 将 your_app.apk替换为要检查…

【数据结构】--189.轮转数组

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

Rethinking the Image Fusion(PMGI)

1.摘要 本文提出了一种基于梯度和强度比例维护&#xff08;PMGI&#xff09;的快速统一图像融合网络&#xff0c;可以端到端实现各种图像融合任务&#xff0c;包括红外和可见图像融合、多曝光图像融合、医学图像融合、多焦点图像融合和全色增强。我们将图像融合问题统一为源图…