【2.预备知识】

#pic_center

R 1 R_1 R1

R 2 R^2 R2

目录

  • 知识框架
  • No.1 数据预处理
    • 一、N维数组样例
    • 二、创建数组
    • 三、访问元素
    • 四、数据操作
    • 五、数据预处理
    • 六、D2L注意点
  • No.2 线性代数
    • 一、标量
    • 二、向量
      • 1、基本操作
      • 2、空间表示
      • 3、乘法
    • 三、矩阵
      • 1、基本操作
      • 2、乘法
      • 3、空间表示
      • 4、乘法
      • 5、范数
      • 6、特殊矩阵
      • 7、特征向量
    • 四、D2L注意点:
      • 1、矩阵克隆
      • 2、矩阵降维
    • 五、QA
  • No.3 矩阵计算
    • 一、标量导数
    • 二、亚导数
    • 三、梯度
      • 1、y是标量,x是向量
      • 2、y是向量,x是标量
      • 3、y和x均是向量
      • 4、y和x均是矩阵
    • 四、QA
      • 1、导数作用
      • 2、自动微分和计算图
  • No.4 自动求导
    • 一、向量链式法则
    • 二、自动求导
    • 三、计算图
    • 四、自动求导的两种模式
    • 五、反向累积
    • 六、D2L注意点
      • 1、梯度存储问题
      • 2、求导问题
    • 七、QA

知识框架

No.1 数据预处理

一、N维数组样例

最基础的数据操作;就说最基础的数据结构;我们真的是从0开始;这一次我们来从基础开始数据操作;就是说机器学习最用的最多的;数据结构是n维数组;这是所有的机器学习,神经网络;以及深度学习用的主要的数据结构;就是说我们举几个例子;最简单是一个0位的啊;数字叫做标量;比如说最简单就是一个1.0;一个浮点运算;它可能表示一个物体的类别;一维的数组叫做向量;比如说这有三个数字;它是一个特征;比如说是一个特征向量就是一个样本;我把它抽象成一行数字;2D呢2D就是一个矩阵;这里有3行有3列;就说我们可以是一个样本的特征矩阵;这样子的话我们要是三个样本;每一行表示一个样本;每一列就表示它不同的特征;当然我们会解释什么呀是样本;什么是特征;在之后解释;

image-20231012224539448

当我们往下走;该做到3D;3D的话最简单就是一张图片;你的RGB的图片是一个三维的数字;因为它有宽度;就是你的一行一行你有高啊;宽其实是列的个数和高;就是你的有多少行;还有你有r g b三个通道;所以它是一个三维的一个数字;当四维呢;四维的话就是啊;n个三维的数组放在一起;比如说一个RGB图片的批量;我们在深度学习的啊;训练的时候;通常是不是一张一张图片去读;我们通常是;比如说每次读128张图片;那就是一个batch一个批量;就是一个四维的一个数啊;数组我们可以做到五维;我们啊现在用的会比较少;我们这堂课用的不多;比如说一个视频的批量;做视频其实是说你就是以很多图片;但是你还有个时间的维度;所以你的是一个啊;批量大小乘以时间;乘以宽高和通道的一个5D的数字;

image-20231012224649360

二、创建数组

然后我们可以创建一个数组;创建数组我们需要给三个东西;一个是说我要什么样的形状;比如说我要一个3*4的一个矩阵;我要指定说每一个元素的数据类型啊;比如说我要一个32位的浮点运算啊;32位的浮点数;然后我要告诉你说每个元素的值;比如说我可以全是0;或者可以全是一个随机数啊;下面这两张图表示啊;左边是说;我所有的元素的值;是按照一个正态分布表示的;一个normal distribution;我的右边是一个按照均匀分布;就是在0-1之间均匀可以给我出一些值;

image-20231012224757660

三、访问元素

那我们可以访问它的元素啊;这里给了几个例子;第一个是说我要访问第一行;它其实是说行是从0开始的;叫零一就是第二行;其实它的下标是一和;它的;第三列就是它的下标的index是2的;这一个数字是7;当我也可以说我要访问啊一行啊;第一行就是说和;通过冒号表示;说我要把这一列所有的元素访问出来;就是说一啊;逗号冒号就是把5678啊出来;当我们可以访问一列;就是我要访问第一列;把所有的行这一块;啊这里是有一个type啊;这个东西应该是啊冒号一;要把这一列拿出来;但是我可以拿一个子域;就是说我说我要访问这是第;这是行从从第一行开始到;第三行的开区间结束;就说我是拿到的一和2两个;就虽然它是3结尾但是它是个开区键;所以是拿到第一行和第二行;然后呢第一冒号后面不打的话;那就是表示拿到所有;就是从第一列开始拿到所有的一列;啊最后一个例子是说我要跳的访问;则说从第0行到最后一行;但是每每3行一跳;就说把第0行拿出来把第3行拿出来;列的话是每两列一跳;就是把第一0列和第2列拿出来;这就是访问一个带跳转的一个子区;这是一个最简单的访问元素;;

image-20231012224847760

四、数据操作

"""
首先,我们导入torch。请注意,虽然它被称为PyTorch,但我们应该导入torch而不是pytorch
我们要import Pytorch;就是我们叫做Pytorch;但实际上导入的是torch就是Python;
就是说大家去安装的时候也要去安装torch啊;不要去安装Pytorch在import的时候也要import torch;
"""
import torch"""
张量表示一个数值组成的数组,这个数组可能有多个维度
我们举个例子;就是说在torch里面;生成arrange就是从0到12;
我们把所有的0到12之间从0开始到12前的11结束的所有的东西拿出来;它是一个向量;
就是我们复制给x然后把x print出来;那我们可以运行一下啊;
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
"""
x = torch.arange(12)
print(x)"""
我们可以通过它的shape来访问这个张量的形状;就是你x.shape;你看到它是一个向量它就是一个维度;
就是说这个维度的长为12;它是一个以维数元素为一的一个数组;
然后它的;number of elements(缩写numel)就是说你里面元素的总数;它永远是个标量就是12;
torch.Size([12])
12
"""
print(x.shape)
print(x.numel())"""
如果我们想改变一个数组或者一个张量的形状;但不改变元素的数量和元素值的话;
我们可以用reshape;这个函数;刚刚我们是以12个元素对吧;长为12的向量;
然后我们可以把它reshape成是有3行和4列;看到它是元素是说它在每一行是连续的;然后把它掐成三行;
这样子我们就是说在0123;然后这样子一个3*4的一个矩阵;
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
torch.Size([3, 4])
12
"""
X = x.reshape(3, 4)
print(X)
print(X.shape)
print(X.numel())"""
我们可以创建一些全0的一些函数;就是给形状是234;元素为全0;
然后当然是我们可以元素为全1对吧;可以看到元素为全1;就是形状是234;
tensor([[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]],[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]]])
"""
Y = torch.zeros((2, 3, 4))
print(Y)
Y = torch.ones((2, 3, 4))
print(Y)"""
要特定的一些值;我也可以通过一个Python的列表来复制;我们这里再创建一个二维的一个数组;
这个告诉你是第一行的元素是2143;第二行的元素是1234;然后第三行的元素是啊4321;
然后这是一个列表;然后列表嵌套列表就是一个;list of list单子;我会创建一个二倍的东西出来;
这是一个二维的数字;当然我可以创造一个三维对吧;我再打一个框;放括号就会变成一个三维的数字;
你看到这是一个啊;你可以可以有两个框在这里对吧;如果我要打印它的shape的话;看到是说是一个三维的是134;
"""
print(torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]))"""
当然是说我能创建数组的后;我可以做一些比较常见的标准算数运算;加减乘除和指数;
所有的这些运算都是按元素进行的;所以我们先从比如说我们创建一个;
我们特别给了一个1.0;就是说这样子;我们创建的是一个浮点运算啊;就是如果你不你把这个0.1去掉的话;它变成整数了;
其实然后呢我做x加y;他就会按元素全部加起来;你可以认为是3460;
然后做减法按元素做减法;
按元素做乘法;
按元素做除法;
然后按元素求幂;就是对每一个x元素求二次方;
当然是说我还可以做更多计算了;就说我可以做指数对吧;就说按元素来;每个元素做一些指数的运算;
tensor([ 3.,  4.,  6., 10.])
tensor([-1.,  0.,  2.,  6.])
tensor([ 2.,  4.,  8., 16.])
tensor([ 1.,  4., 16., 64.])
tensor([0.5000, 1.0000, 2.0000, 4.0000])
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])
"""
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
print(x + y)
print(x - y)
print(x * y)
print(x ** y)
print(x / y)
print(torch.exp(x))"""
我们要把可以做一些张量之间的;或多元素组之间的一些操作啊;
比如说我们用一个;我们还是一样的生成一个;跟之前一样;
就说生成一个从0到11的元素;长为12的向量;把它reshape到3和4;
这里我们特别指定说你用float 32;就不要给我生成一个integer了
然后呢y也是一个啊;跟刚刚是一样的;是一个3*4的一个运算啊;他们两个的形状是一样的;
然后我们用cat;就是说我把这两个元素合并在一起;然后在第0维合并;定理位;就是在行就是你可以认为是在堆起来;
那这看到是说这个;就是说这是我们的第一个生成x;这是我们生成的y;然后我们是在按行上面合并起来;
然后我们可以说dimension等于1;就是按列;
tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[ 2.,  1.,  4.,  3.],[ 1.,  2.,  3.,  4.],[ 4.,  3.,  2.,  1.]])tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],[ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],[ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]])
"""
X = torch.arange(12, dtype=torch.float32).reshape((3, 4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
print(torch.cat((X, Y), dim=0))
print(torch.cat((X, Y), dim=1))"""
然后我们可以通过说;逻辑运算符来构建一个二维的张量;
就说我判一下y是不是等于x;
它就是按元素所谓的按元素值进行判;就说啊就这一个元素;
这两个元素是相等的;别的元素等于是都不相等;tensor([[False,  True, False,  True],[False, False, False, False],[False, False, False, False]])
"""
print(X == Y)"""
tensor(66.)
"""
print(X.sum())"""从numpy过来的;就是说一个叫广播机制;
这也是最容易出错的一个地方;就说如果你代码没写好啊;
看上去一切都在运行;实际上可能不是你想象那样子;
比如说;创建一个a;它是一个二维的数组;但是它是一个向量其实它是有三行;它有一列;
然后我创建一个b;它有一行两列你可以打印下去找;这样子对吧;这是a这是b;
我在做a加b;按照我们刚刚的定义;我们是按;a的每个元素和b的每个元素相加;
但它形状不一样啊;不一样怎么加呢;就是说在这个情况下;他有一个特殊的机制来帮你+;
就是说如果当我看到两个张量;有两个多元数组;就我们;其实张量和多元数组是混着用的;
好这两个张量形状不一样;但是呢;我可以有办法把它变成形状一样;为什么呢;
是因为你这里;首先我们的尾数是一样的啊;都是一个纬度等于2都是一个数组;如果你维度不一样就没戏了;因为纬度一样;然后呢第一个纬度我是3但你是一啊;第二个纬度虽然我们不一样;但是我是2你是一;所以的一个半是说;一个办法师说;我可以把我这个一的这一维度;复制一下;复制成两个;然后把我这个跟你不一样的地方;因为我是一嘛;我就可以把我复制成3下;这样子就会把;a复制成一个3*2的一个矩针;把b复制成一个啊3*2的矩针;然后再它相加;这样你可以看到是说;而我们加出来就是一个3*2的矩阵;了这就是一个广播机制;所以是说;很多时候;你如果可能没有想到说我要做广播;就说我就想把两个项链一加;但是你没想到一个项链没弄好;就是加了一个不小心;加了一个纬度和加了一个纬度;它就变成一个矩阵;相加就变成一个矩阵出来了;就不是你想象的那样子;所以这一块就是虽然它很方便;但是大家一定要注意说;有这个机制的存在啊;导致如果有问题的话;大家可能会;去想;这个事情是不是因为广播机制造成的;
tensor([[0],[1],[2]])
tensor([[0, 1]])
tensor([[0, 1],[1, 2],[2, 3]])
"""
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
print(a)
print(b)
print(a + b)"""
然后我们来做一下元素的访问;我们之前有说过说;元素可以做哪些访问啊;
最简单X负1 就说把最后一行访问出来;;x 1-3就是说啊把第一行和啊第二行给拿出来就是x 1-3;
然后我们当然可以是说我要写值;我怎么写呢;我把第一行;就是它其实行还是从0开始啊;
所以第一行其实是说这个是第一行;然后第二列列是从0开始;所以你是写的是这个;是;你把这个元素的值写成9;
然后把x打印出来;你会发现啊别的值呢都没有变;就9就变化了;
tensor([ 8.,  9., 10., 11.])
tensor([[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.]])
"""
print(X[-1])
print(X[1:3])"""
最后大概就是说;Python里面最常见的其实既不是pytorch;也不是Tensorflow;其实是numpy;
多元数组的运算框架;就是说;可能大家如果学Python数据编程的话;可能是从numpy学起的;
所以呢当然是所有的;不管是所有的框架;它都能够很方便的从numpy进行转换;
比如说x等于numpy;它会得到一个numpy的一个多元数组;当然你可以torch Tensor;
从一个numpy a拿回来;可以构建一个pytorch的一个Tensor;
你可以看到是说a的type;就是它的类型;它是一个numpy NDRA;
然后它的b是从numpy构建的;所以它是一个torch的一个Tensor;
所以这个是numpy 数据类型;这个是torch的数据类型;
当然如果你是大小唯一的张量的话;我可以变成一个Python的标量;
就是创建一个大小唯一的啊torch的Tensor啊;a当然它就是一个torch的Tensor啦;
OK把a点item拿出来它就是一个啊;number;的一个辅点数啊;当我可以说float a;也是变成一个Python的辅点数
int a;它就变成一个integer就是也是Python的;这就是转变;
<class 'numpy.ndarray'>
<class 'torch.Tensor'>
tensor([3.5000])
3.5
3.5
3
"""
A = X.numpy()
B = torch.tensor(A)
print(type(A))
print(type(B))a = torch.tensor([3.5])
print(a)
print(a.item())
print(float(a))
print(int(a))

五、数据预处理

"""
数据预处理是说;如果我有一个原始数据;我怎么样把它读取进来;
使得我们通过;机器学习的方法能够处理;
我们这里给一个;几个非常简单的预处理;当之后我们随着课程的加深;我们会介绍更多的一些课程的处理;
首先我们创建一个人工的数据集;存在一个CSV文件里面;这是一个很小很小的文件;
然后呢;接下来就是说;我们把它存在一个CSV文件里面的话;
"""
import os
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA,Pave,127500\n') # 每⾏表⽰⼀个数据样本f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')"""
我们可以把它读取进来;一般读取CSV文件的话;一般用的是叫做pandas;
这个库也是说啊;作为数据科学家最常使用的一个库;可能它的;使用频率在跟numpy是差不多的频率;
OK我们如果你没有装pandas的话;是一个很小的Python的包;
然后我们import pandas;然后pandas的话;它提供了一个很简单的函数;叫做read CSV;
我们就把刚刚我们读取的文件读取进来;我们就可以打印在print在这个地方;
你会发现这里给你的你的第一行就是你每一个列的名字;接下来是说这有4行;我们运行一下;然后你当然可以print;NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000
"""
import pandas as pd
data = pd.read_csv(data_file)
print(data)"""
接下来是说;注意到我们有一些数据是缺失的;
所以对于数据科学家来说;最重要的一件事情是说;怎么样处理缺失的数据;
或者说整个机器学习就是处理;缺失数据;就是你要预测未来;未来是什么样子;
我们不知道这是一个缺失的数据;当然这这里的话我们先不做预测;我们先说用很简单的方法;
我们把一些缺失的数据补起来啊;补的方法有很多种;最常见的包括如果有一个数据是缺失的话我们就把它丢掉;
把整个这一行丢掉;这是一个最常用的方法;当然很多时候我们说我们丢掉也太可惜了;
然后呢最常用的;这也是一个叫插值的方法;比如说我们这里怎么样进行插值;
首先呢我们数据我们先把它分成一个;输入的特征和输出;但我们现在没有讲;输入特征和输出是什么样子;
那没关系;我们就是说啊对一个data;它是一个;刚刚我们注意到是一个;4乘以3的一个表;
然后我们通过iloc就是index location;来把第一个的第0和第一列;和所有的行拿出来放在input里面;然后把最后一列拿出来放在output里面;
"""
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())"""
好那么接下来就是说;因为我们先把所有的缺失的值和所有的字符串全部变成了一个数值;
那么我们就可以变成一个;pytorch的Tensor了;然后我们input torch;
然后;到Tensor我们就把input values放进来;output values放进来;大家可以看到是说OK;
现在我们把一个CSV文件;转成了一个纯的;我们昨天提到过的一个张量了;
注意到这里是float 64;这个传统的Python一般会;默认浮点数会用float 64;但是64为浮点数啊一般计算比较慢;
对深度学习来讲;我们通常用32为浮点数;在这个就是一个非常简单的一个样例;
教大家怎么样把一个;CSV文件读取进来;做一定的特征预处理;然后变成一个pytorch的用的一个Tensor;
(tensor([[3., 1., 0.],
[2., 0., 1.],
[4., 0., 1.],
[3., 0., 1.]], dtype=torch.float64),
tensor([127500, 106000, 178100, 140000]))
"""
import torch
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
print(X,y)

六、D2L注意点

import torcha = torch.arange(12)
b = a.reshape((3,4))
b[:] = 2
print(a)"""tensor([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
"""

No.2 线性代数

一、标量

如果是标量的话我们做些简单的操作; 比如说c等于a加b; 然后c等于a乘b; 然后然后取个sin; 长度的话我们标量有长度; 它就是它绝对值; 如果大于0的话是a; 如果小于0的话就是负a; 长度我们有一些公式; a加b的绝对值小于等于a的绝对值加b的绝对值; a乘以b的绝对值; 等于a的绝对值乘b的绝对值; 这是标量的长度;

image-20231017160653885

二、向量

1、基本操作

把标量拓展到向量; 标量就是一个数值; 向量就是我们刚刚提到的就是一行值; 你可以既既是行向量也是列向量; 但数学上我们并不太区分行和列啊; 这里a和b都是向量里面很多元素; c等于a加b那就; 是说c的第 i个元素等于a的i个元素加上b的i个元素; α是标量; b是向量的话那就α乘以b; 就是说啊; c的每一个元素等于i的元素; 等于α乘以bi; 如果做Sin的话也是每个元素做Sin;

好接下来是一个数学的概念; 长度; 就是向量的长度; 就是向量的每个元素的平方求和; 再开根号这它的长度; 就说a的长度原来是大于等于0的; 然后呢; 两个向量的长度小于等于a的长度加上b的长度; 就是三角定比; a乘以b; 就是说它等于啊; 如果a是一个标量的话; 那么它等于a的绝对值乘以b的向量的长度;

image-20231017160745829

2、空间表示

这向量; 向量可以给一个直观上理解; 这个是蓝色的是a的话; 黄色是b的话; a加b; 就是把这个两个向量接起来就是c; 就绿色c等于a加b; 如果a还是这个蓝色的;α是一个长度是个标量的话; 那就是说可以把它拉长;

image-20231017161008307

3、乘法

当我们可以做点积向量的话;就a的转置乘以b就等于把a的元素; i的元素乘以第一b的i的元素; 然后求和; 如果这两个向量是正交的话; 就是垂直的话; 那么他的求和是等于0的; 这是他这是正交向量

image-20231017161047842

三、矩阵

1、基本操作

看到矩阵; 就说n行与n列; c等于a加b; 那就是也是每个元素相加; α标量乘以矩阵那就每个元素相乘; sin也是每个元素求sin; 这是一样的;

image-20231017161106072

2、乘法

但是说矩阵会乘法会有一点的不一样; 矩阵a乘以b就是a是一个矩阵; b是一个向量; 那怎么乘呢; 就是说对 a的每一行; 乘以; b我们做一个列向量; 就是每一行和这个列像量做内积; 就是每一个元素; 乘起来然后求和; 写到第一行; 然后呢; 这一行第二行再跟他列向量做内积; 写到第二行; 第三行跟列向量做内积写到第三行; 这是矩阵的乘法; 因为之后的机器学习所有的模型; 矩阵乘法是最基础的;

image-20231017161120766

3、空间表示

然后矩阵乘法从直观上来说; 它是一个扭曲空间; 就说你可以认为是说我一个向量; 通过一个矩阵乘法; 变成了另外一个向量; 就是我这个矩阵; 其实是把一个空间进行了扭曲; 比如说这个是原始的两个向量; 通过矩阵乘法之后这个向量蓝向量变成这个蓝向量; 这个绿向量变成这个绿向量; 就说这个矩阵; 就是把整个空间进行到一个扭曲; 这是线形代数里面要讲的事情; 我们当然知道就行了;

image-20231017161235900

4、乘法

简单的矩阵乘法!

image-20231017161253218

5、范数

然后当然矩阵一样的; 要长度就说我们叫做范数; 因为c和b都是向量的话; 因为c等于a乘以b; c的长度就向量的长度; 根据我们刚刚的定义一定会小于等于a的范数乘以b的范数; 然后这个取决于怎么衡量b和c的长度了; 就说常见的范数有矩阵范数; 就说最小的满足上面公式的值; 就说对于a的矩阵啊; f范数的话; 其实就是; 等着把这个矩阵拉成一条向量; 然后做一个向量的范数;就说把a的所有的元素乘平方全部加起来; 然后开根号就是啊f范数; 因为它f范数比较简单; 所以我们一般会用f范数; 就矩阵范数会算起来会比较麻烦一点; 我们一般是不去算的;

image-20231017161335324

6、特殊矩阵

但有些特殊的矩阵就是说我是对称的; 和反对称; 就是说对称矩阵是说以这条线啊划一条线啊; 它在这条线上; 是一个对称的; 就说这两个元素是一样的; 这两个绿色是元素的是一样的; 就是Aij等于Aji; 反对称呢就说Aij等于负的Aji; 就是一个一是一半变成一个负数; 另外一个说正定; 正定是说啊如果一个矩阵是正定的话; 那就是说它这个矩阵乘任何一个行啊; 一个列向量和一个横向量; 它都大于等于0; 就是它是一个正定矩阵; 但我们不会用到太多正定矩阵啊; 这是一件啊深度学习比较好的事情;

image-20231017161436707

image-20231017161506395

7、特征向量

就是特征向量和特征值; 就是说特征向量; 是说不被矩阵改变方向的向量; 我们说; 矩阵就是把一个空间进行一个扭曲; 但有一些特殊的一些向量不管; 被这个矩阵作用之后它不会改变; 就说比如说啊; 这个红色和一个蓝色的向量; 被a作用之后; 做到这里; 红色被改变了; 但绿色没有被改变; 就绿色的方向没有变; 但是大小变了没关系; 那么这个绿色就是特征向量; 这个就是一个直观上的理解啊; 对称矩阵总是能找到特征向量; 但不是每个矩阵都有特征向量;

image-20231017161547795

四、D2L注意点:

1、矩阵克隆

在这里使用克隆的话;更改B的数值并不会影响到A的数值;如果使用B = A;这样只是给的索引;

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()  # 通过分配新内存,将A的一个副本分配给B
A, A + B

2、矩阵降维

关于2.3线性代数中的6降维需要重点理解;如何按照特定的轴做sum

举个例子;假设我们有个矩阵:5行4列;那么它的shape是[5,4]的list;它的维度就是2;并且它的axis:即它的轴;第一个轴是0;第二个轴是1;就是你的shape是一个list,那么第0轴就是第一个元素;2轴就是第二个元素;那么按照行就是轴为0;按照列就是轴为1;

如果按照axis=0来做sum的话,那么步骤就是按照第一列求sum;然后第二列求sum;以此类推得到的是一个长为4的行向量;

如果按照axis=1来做sum的话,同理;

如果是三维的话, shape[2,5,4] ;

如果按照axis=1来做sum的话,

五、QA

很多的东西啊~

No.3 矩阵计算

本节就说矩阵计算;其实是讲矩阵怎么求导数;因为对于机器学习;或者是说对于深度学习来讲;我们要知道怎么求导数;因为你的所有的优化模型的求解;都是通过求导数来进行的;

一、标量导数

首先回忆一下高中数学标量的导数;y是一个函数;对函数y在x上求导;a不是x函数的话;那么它对于x的导数呢;是0;如果y是x的n次方的话;那么它的导数;那就是n乘以x的n减一次方;如果y是x的指数的话;那么它的导数不变;如果它是log的话;它会变成了x分之一;sin变成cos

导数就是切线的斜率;就说比如说我有一个函数;y等于x的平方;那么画出来就是个黄线对吧;那么这个它的导数那就是2 x;然后呢在x等于1点的导数;那么把x等于一带进去那么它就是2;那么在x等于一这个点;我们可以画一个啊切线;那么切线这个斜率它就是2;就是导数的意义;

当然还有一些导数的一些基本的计算;就是说运算规则;就是说如果y是一个;u函数加上一个v函数的话;那么对x求导的话;那就是分别对u求导和对v求导;啊如果y是u乘以v的话;那么就是说啊对u求导;然后乘以v加上对v求导啊乘以啊u;我们对于y如果是一个u的函数;u是一个啊x的函数的话;那么y对x求导就是先对;啊问y是u的函数先对u求到;然后对u对x求到;它可以做一个分解就是一个链式法则;
在这里插入图片描述

在这里插入图片描述

image-20231018101215288

二、亚导数

不一定存在导数的话会怎么办;就说我们将导数;拓展到不可微的导数的情况下;怎么办啊;这里举个简单例子;y是x的绝对值;那黄线就是这样子;在零点的时候它的切线不为一;就说你可以斜率等于0.5也行;等于-0.3也行;它都在这个线在这个函数的下面;那么就是说;我们可以通过一个叫亚导数;就是它的数学符号就是一个啊;那就说x大于0的话它是一;x小于0的话它是-1;但是在x等于0的时候;它可以在-1和一之间取任意的值;

另外一个例子是说你用的是最大化;这是Max x等于0;如果呢如果你x大于0的话那就是一;啊因为它就等于x的本身;如果你小于0的话它就等于0;因为它是一个常数;但如果x等;于0的话你可以a可以在;0和一之间都可以选择;都没关系;

image-20231018101359336

image-20231018101411443

三、梯度

导数拓展到向量;通常我们叫梯度;就是说这里画了一张图;就是说最关键的是说你要搞得清形状;当你拓展到向量啊矩阵的时候;你要把形状搞对你形状;形状搞对了的话通常也就对了;就是说当你y是x的函数;y是标量;x是标量的话;它的求导当然是一个标量;当你如果是y是一个向量;x是标量的话它会变成一个向量;同样的话你y是一个标量;你x是向量的话;它也是一个向量;那如果两个都是向量的话;它会变成一个矩阵;

image-20231018101629996

1、y是标量,x是向量

首先说我们考虑第一个情况;y是一个标量;x是一个向量;就X这是一个列向量;那么它的导数关于列向量的导数;它是一个行向量;就是大家理解一下就列会变行;它的第i个元素;那就是y是一个标量;关于x的第i个元素的导数;因为这两个都是标量对吧;我们知道怎么求了;

好举个例子啊;举个例子;那就是说x是一个长为2的一个向量;y呢;就是定义为第一个元素的平方加上2;乘以第二个元素的平方;那么就是说它的导数就是一个;那就是说;首先我们第一个元素那就是说X1;它要求导那就是2乘X1;第二个元素呢就是对X2求导;那就是4倍乘X2;这就它的导数它是一个行向量;

就是我们怎么理解这个东西呢;关键是一个理解;因为就是说大家可以不知道;导数怎么求;但是一定要需要他是怎么理解的;理解上来说就是说;这个东西我可以画成一个等高线;就是说这个函数X1的平方加上二乘以X2的平方;我可以做等高线;就是一个一个这样子椭圆的形状;那么呢对于X1和X2等于一和一这个点;我可以做等高线做切线;然后它的做一个正交方向出来;这个方向的值是一个2和4;它就跟你的梯度是一样的;你把X1和X2带值进去的话就变成24;就是说你的梯度就是跟你的等高线是正交的;意味着是说你的梯度指向呢;是你的值变化最大的那个方向;这是一个核心的概念;就是说;梯度一定指向你那一个值变化的最大的方向;通常是往大的直走;这个也是我们今后所有的;机器学习求解的一个核心思想;

image-20231018102002773

好我们举个例子;还是刚刚那样的例子;首先y是一个标量;x是一个向量;当标量是一个跟x无关的函数的话;那么它是一个全零的一个向量;它是一个行向量;就是我们要转置来表示;如果是a乘以u的话;那么就是说你把a拿出来;然后对u对x求导;如果是求和的话;对x求和的话;那么就会变成一个全一的一个向量;

如果是它的;那就变成2乘以x的转置;同样的话我们之前如果是u加v的话;那么同样的话;我先对u就求导数和对v求导数;然后加起来;乘法的话是一样;就是说;关于u关于x的导数乘以v加上v;关于x的导数;再乘以u;如何累计的话;这也是比较有意思的情况;那就是啊;首先是u的转置乘以它关于啊v的;关于x的导数我们这里还没讲啊;就说两个向量;关于向量的导数它是一个矩阵;就是一个;行向量乘一个矩阵;再加上另外一个横向量乘一个矩阵;这就是一个;所以它的导数出来也是一个行向量;

image-20231018102505825

2、y是向量,x是标量

反过来讲;如果当你的上面的函数是一个向量;下面的函数是一个标量的话;假设y是一个列向量;那么关于列向量关于标量的导数;它也是一个列向量;就说刚刚是要会变现在是不变了;所以可以看到这个图;所以是说当你x是一个列向量;y是一个标量;那么它的导数是一个很怪的行向量;如果y是一个列向量;x是标量的话;那么它是一个跟它一样长的一个列向量;所以说这个被称之为分子啊;分子布局符号你可以反过来;你可以把它就是说它们行列可以交换;那就叫分母布局;就说你有哪个布局的没关系;只是说你必须要用一个布局;这样子你的形状是能对上的;所以我们这里一般是用分子布局方法;

在这里插入图片描述

3、y和x均是向量

那就是说我们刚刚提过啊;向量关于向量是一个矩阵;具体其实也挺简单的;就是说;y是一个向量;x是一个向量;那么呢因为y是一个向量对吧;所以啊;我先把它拆解成一个列的向量;然后每一列的那一个元素;第i个元素就是y的第i个元素;关于x的一个导数;它是一个横向量;那最后会变成一个矩阵;大家可以体会一下啊;就是说这里面每一个是一个行的;因为我们之前讲过;但是呢如果y作为本身的话;它是一个向量的话;那么它本身是一个列向量;所以最后会拉成一个矩阵出来;

image-20231018102706136

举几个例子;就是说同样的话;你a是一个跟x无关的一个向量的话;那么它的输出是一个全0的一个向量;矩阵如果是啊;不然的话如果是本身的话;那他就会变成一个对角;就一个identity;矩阵;啊如果是a乘以x的话;y等于x乘以x的话;它的导数是a这个矩限的本身;如果你是反过来的话;你是一个x导啊转制成a的话;那么它导数就是a的转制的本身;这两个是非常有用的;我们之后可能会讲到的一个东西;然后呢同样的道理是说;如果是标量乘以u的话;那么呢就是我标量可以拎出来;如果是矩阵乘以u的话;矩阵而且是跟x无关的话;那么我可以把a拿出来;啊如果是u加上v的话;分别对u和对v求了;

image-20231018102843470

4、y和x均是矩阵

这里基本不会;

输入拓展到矩阵;就是大家不要求全部能弄懂是怎么回事啊;首先说我们当你的y是一个标量;这是一个矩阵的话;刚刚记得吗;我们如果是向量的话;我们就把它其实转置了一下;我们可以把一个通过一个刚刚提到过;可以通过用一个二维的数组来区分行向量和列向量;如果你的项量是在下面的话;那么它的结果会要转一下;如果你矩阵的话;你会被和k和n会转至一下;同样的话;如果你矩阵在上面的话;你其实不会变化的;就是m乘l是不会变化的;当这里比较好玩的是说;当你的y是一个矩阵;你x是一;个向量的话;那等于是说你要把n放到后面;然后拎到最后这个地方;如果你的y和x都是一个矩阵的话;那就是更好玩了;就是说我们绕开一点啊;就是说前面两项是来自于y的m乘以l;但是呢后面两项是来自于x;但是你要把x给翻过来;就是k要放到这里然后n要放到最后;它就会变成一个四维的一个丈量啊;就是说你当然可以做到更高位的情况;就是说以此类推;可以做到更高位的情况;这就是我们的矩阵的技巧;

image-20231018103103386

四、QA

1、导数作用

导数的作用主要是进行梯度下降;但容易陷入局部最优解;请问是不是可以通过Leap PROF函数;或者其他方法来使得下降得到全局最优解;这个问题就是说;如果你是凸函数的话你可以拿到最优;如果你不是突函数的话;其实你不管用;几乎是拿不到最优解的;就说当然你可以;理论上你数学是可以但从计算上来说;几乎是拿不到最优解的;这个真的是;啊一个不幸的消息啊;

而且机器学习几乎是不会处理凸函数就是说;如果你这个问题能得到最优解的话;那就是一个P的问题;我们机器学习不关心P问题;我们只关心NP的问题;所以大家不要去纠结最优解这个事情;

2、自动微分和计算图

pytorch和M开头的;采用的是自动微分和计算图;对的;我们马上就会讲自动微分和计算图;就说不会让你自己去求导;大家能够知道;导数大概是怎么算的;至少你的形状能够搞清楚;就说你必须要知道整个是怎么算出来的;但是你能大概理解导数的形状跟你的input的形状是;什么样一个变化的关系;我觉得这个比较重要;

No.4 自动求导

一、向量链式法则

标量的链式法则;就y是一个u的一个函数;u是关于x的一个函数;那么y对x求导的话;那就是说我先把y;把u做成一个变量进来求导;然后然后把u做成一个函数关于x的导数;你要拓展到向量;拓展到向量;最大的问题说你要把形状搞对;就说当你的y是一个标量;x是一个向量;那么呢首先u也是一个标量;那么呢这个当然是个标量;u关于x;它就是一个一乘以n的一个东西;那么一乘它就变成一乘n;就是这个形状不发生变化;那假设u是一个向量那怎么办呢;那就y关于u;那还是一个一乘k;假设u是一个k尾的一个向量;那是一乘k;那么呢;u关于x它是一个k乘n的一个矩阵;那么它一乘还会变成一乘n;然后你的y是一个向量;x是一个向量u也是一个向量;同样的道理;假设你的是一个m乘n的话;那么它就是u是一个长为k的话;那么它是一个m乘k;然后它是一个k乘n这样子矩阵;两个矩阵一乘;它还是变成一个m乘n的一个矩阵

image-20231018152614594

我们举两个例子具体是怎么计算的这几个;这就是一个我们之后要讲的线性回归的一个例子;首先;假设x和w它都是一个长n的向量;y是一个标量;那么的函数z是说x和w做内积;减去y然后做平方;那我们要计算z关于w的一个导数;那我们怎么做呢;那我们就是先分解吧;我们先把它写开;首先说我记一个a中间变量a;它是x和w的内积;b是a减去y;然后z是等于b的平方;这样子我们把它分解成三个步骤;然后我们用链式法则;

那z关于w的导数那就是说;z关于b的导数;b关于a的导数a关于w的导数;然后我们把这个z b a的定义展开;那就b的平方关于b;a减y关于a;x和w的内积关于w;那么第一项我们知道就是2b对吧;那么这一块就是因为它是一个;就是一;这一块我们之前有讲到;它就是x的转置;那么再把b的定义拆开;就b是怎么定义的;然后它长成这个样子;那么就会得到说z关于w的导数;那就是;w和x的内积减去y然后乘以x的转置;这是一个标量;所以它是说因为它是一个;它的向量在下面;所以它出来的是一个转置的一个向量;

image-20231018152743722

涉及到矩阵了;x是一个m乘以n的一个矩阵;乘以w;一个向量减去另外一个向量做;同样的道理它是一个标量对吧;所以我要对标量对于向量求导;其实这个跟之前是一样的;我们就是说;首先我就运用中间变量;a是一个向量等于x乘以w;b等于a减去y;z就等于b的||;同样的话我们用这个展开;好我们就不详细讲了;那么就说它的本身是一个2的;b的转质;乘以它是一个ident;那就是说一个identity Matrix;它呢我们刚刚讲过它就是x的本身;那么最后的把b展开的话那就是;x乘以w减去y的转值乘以x然后乘2;

image-20231018152847719

二、自动求导

到现在是说我们能够做一个;如果你真的给我一个函数;我能够通过链式法则;和一些很基础的导数的;我可以帮你一个一个展开;但是呢最大的问题是说;神经网络动不动就几百层;几乎是你手写是很难的一件事情;所以呢我们需要说能够自动求导;意思是说;一个函数在指定值上我要做求导数;

它其实还有两种不一样的定义;一个叫符号求导;如果大家用过mathematic卡的话;就是我给你个函数;我能把你的导数求出来;而且这是个显示的计算;另外一个是叫数字值求导;就是说我给你任何一个f x;我不需要知道f本身长什么样子;然后我能通过数值去拟合这个导数;就是说我用一个很小很小的h减去f x除以h;所以我们来讲一下;自动求导是怎么做出来的;

这个涉及到一个叫计算图的概念;就是说虽然我们就说用了pyTorch;不需要去大家去理解计算图;但是我觉得大家有必要去知道下;它的内部的一个是怎么样工作原理;就说这样子的话;你如果用Tens或用别的话;你大概能够理解计算图是什么样子;

image-20231018153054726

三、计算图

就计算图;其实本质上就等在于我们刚刚用链式法则的一个求导的一个过程;首先我们将代码分解成操作子;就是说一步一步把它展开;然后我们再将;计算表示成一个无环的图;就是我们还是用刚刚那个样例;那就是说z等于x w;内积减去y然后求平方;那我们怎么做呢;就是按照刚刚的做法;我们把一步一步做成;加入两个中间变量a和b;把它每一个这样子做成很基本的计算值;所以每个圈就表示一个操作;但也可以表示一个输入对吧;这个圈表示w;这个圈表示x;然后这个圈表示a;是在这里做计算呢;y再把a 和y输入进去就会得到b;最后输入b得到z;这就是计算图了;就计算图就是一个无环的一个图;

image-20231018153116355

这个~~~

image-20231018153300077

四、自动求导的两种模式

有两种自动求导的方式;就说回一下链式法则;要假设我y是关于x的一个函数;那么我要计算这个整个过程的话;我有两种方法;一个是正着计算或者一个反着计算;正的计算就是说我先把我从x出发;U1关于x的导数求出来;U2关于X1的导数求出来然后一乘;再往下往下往下往下最后算出来;

我也可以反过来;反过来怎么做呢;就是说我先计算;y就是最终的函数;关于最后的中间变量的一个导数;它乘以倒数第二个;然后再往前往前往前;一直算到最最前面;这个又叫反向传递;就是说;自动求导是一个很古老的一个领域;然后呢;它这个反向累积在人工智能里面;它是大名鼎鼎叫做Back;叫反向传递;其实是一个东西;

image-20231018153449305

五、反向累积

反向传递是到底是怎么样计算的;好我们首先说正向是这样子算的;我们刚刚讲过了正向;好我们来看一下反向;反向是说我先来算z关于b的导数;那就是我需要去;他就等于2乘以b对吧;根据那个然后呢;因为b是我们之前的计算的结果;就是说你;我需要在那;我需要把之前的b的计算给你;存在那个地方;然后把它读出来;就说我需要读取之前的结果;同样的话;我可以计算z关于a的一个导数;它就等于是说我们之前有这个结果了;可以算出来;最后我们计算z关于w的一个导数;我需要既需要知道这个值;也需要知道w这个值;就说从这里过来;就说我需要两个值都需要知道;然后所以的话;反向累积的话;就是说我前向计算的时候;我需要把所有的中间的值给你存下来;但反向执行的话;我就是说我就沿着反方向进行;如果我这两个值的导数不需要的话;我就不计算了;但是呢我需要把这些;中间结果全部拿过来用;

image-20231018153539179

所以的话它的复杂度是什么样子呢;假设我有n个这样子操作子的话;就说比如说我有我的神经网络有n层;那么正向和反向的代价其实差不多的;就是你正的跑一遍反的跑一遍;就是说你到之后我们看到;神机网络的forward和backward;它的计算复杂度差不多;但是比较;重要的是说它的内存复杂度是O(n);就是说你需要把;正向计算里面;所有的中间结构给你存起来;这个是给我们说;深度神经网络特别耗GPU资源;这是因为做;求梯度的时候;需要把前面的结果全都给你存下来;

另外一个我们提到是说正向累积;正向累积的好处是说;它的内存复杂度是ON ;就是说不管我要有多深;我我不需要存任何的结果;但他的问题是说;我计算一个遍了梯度需要扫一遍;这个的话我还是需要再扫一遍;所以是说;这个我们通常在神经网络里面不会用;因为我们需要对每一层计算梯度;所以这个计算复杂度太高;

image-20231018153709899

image-20231018153749325

六、D2L注意点

1、梯度存储问题

在计算梯度之前,需要一个地方来存储梯度,

x.requires_grad_(True)  # 等价于x=torch.arange(4.0,requires_grad=True)
x.grad  #通过这个就可以以后访问梯度了;即y关于x的导数是放在了这个地方的;

2、求导问题

其实深度学习中大部分y都是标量;即之前学的向量对向量的求导在深度学习中是用的很少的

七、QA

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/120558.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

并发编程- 线程池ForkJoinPool工作原理分析(实践)

数据结构加油站&#xff1a; Comparison Sorting Visualization 并发设计模式 单线程归并排序 public class MergeSort {private final int[] arrayToSort; //要排序的数组private final int threshold; //拆分的阈值&#xff0c;低于此阈值就不再进行拆分public MergeSort…

计算线阵相机 到 拍摄产品之间 摆放距离?(隐含条件:保证图像不变形)

一物体被放置在传送带上&#xff0c;转轴的直径为100mm。已知线阵相机4K7u&#xff08;一行共4096个像素单元&#xff0c;像素单元大小7um&#xff09;&#xff0c;镜头35mm&#xff0c;编码器2000脉冲/圈。保证图像不变形的条件下&#xff0c;计算相机到产品之间 摆放距离&…

21.4 Python 使用GeoIP2地图定位

GeoIP2是一种IP地址定位库&#xff0c;它允许开发人员根据IP地址查找有关位置和地理位置的信息。它使用MaxMind公司的IP地址数据库&#xff0c;并提供一个方便的Python API。GeoIP2可以用于许多不同的应用程序&#xff0c;例如网站分析、广告定位和身份验证。GeoIP2提供了许多不…

linux下安装 Chrome 和 chromedriver 以及 selenium webdriver 使用

1 安装 Chrome yum install https://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpm2 下载 chromedriver # 进入下载目录 cd soft/crawler_tools# 查看chrome 版本号 google-chrome --version# 在chromedriver下载地址中找到对应版本&#xff0c;下载对…

在项目管理中,项目经理要控制这三个重要因素:进度、成本、质量

项目管理贯穿项目的整个生命周期&#xff0c;对项目的整个过程进行管理&#xff0c;对项目进行计划、组织、指导和控制的手段。 在项目的生命周期内&#xff0c;进行资源的配置和协调&#xff0c;做出科学决策&#xff0c;从而使项目执行的全过程处于最佳的运行状态&#xff…

22 行为型模式-状态模式

1 状态模式介绍 2 状态模式结构 3 状态模式实现 代码示例 //抽象状态接口 public interface State {//声明抽象方法,不同具体状态类可以有不同实现void handle(Context context); }

python+requests接口自动化测试框架

1、首先&#xff0c;我们先来理一下思路。 正常的接口测试流程是什么&#xff1f; 脑海里的反应是不是这样的&#xff1a; 确定测试接口的工具 —> 配置需要的接口参数 —> 进行测试 —> 检查测试结果&#xff08;有的需要数据库辅助&#xff09; —> 生成测试报…

实现寄生组合继承

寄生组合继承是一种继承方式&#xff0c;它通过组合使用构造函数继承和原型继承的方式&#xff0c;实现了高效而且正确的继承方式。 具体实现步骤如下&#xff1a; ① 定义一个父类&#xff0c;实现其属性和方法&#xff1a; function Person(name) {this.name namethis.age…

浙大陈越何钦铭数据结构06-图1 列出连通集

题目 给定一个有N个顶点和E条边的无向图&#xff0c;请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时&#xff0c;假设我们总是从编号最小的顶点出发&#xff0c;按编号递增的顺序访问邻接点。 输入格式: 输入第1行给出2个整数N(0<N≤10)和E&…

python操作MySQL、SQL注入问题、视图、触发器、事务、存储过程、函数、流程控制、索引(重点)

python操作MySQL(重要) SQL的由来&#xff1a; MySQL本身就是一款C/S架构&#xff0c;有服务端、有客户端&#xff0c;自身带了有客户端&#xff1a;mysql.exe python这门语言成为了MySQL的客户端(对于一个服务端来说&#xff0c;客户端可以有很多) 操作步骤&#xff1a; …

Kafka - 深入了解Kafka基础架构:Kafka的基本概念

文章目录 Kafka的基本概念 Kafka的基本概念 我们首先了解一些Kafka的基本概念。 1&#xff09;Producer &#xff1a;消息生产者&#xff0c;就是向kafka broker发消息的客户端2&#xff09;Consumer &#xff1a;消息消费者&#xff0c;向kafka broker获取消息的客户端3&…

二、【常用的几种抠图方式一】

文章目录 选框抠图快速选择工具抠图魔棒工具抠图对象选择工具抠图套索工具抠图多边形套索工具抠图磁性套索工具抠图 选框抠图 选框工具抠图适合规则的图形&#xff0c;如下图先使用选框工具框出对象的图轮廓&#xff0c;然后再选择并遮住在里边擦出图形的边缘&#xff0c;根据…

Spring MVC 执行流程

前言 Spring MVC 是一个非常强大的框架&#xff0c;它能够帮助开发人员快速构建高效的 Web 应用程序。然而&#xff0c;要理解 Spring MVC 的执行流程并不容易&#xff0c;因为它涉及到多个组件和模块。在本文中&#xff0c;我们将介绍 Spring MVC 的执行流程&#xff0c;帮助…

Java IDEA feign调用上传文件MultipartFile以及实体对象亲测可行

Java IDEA feign调用上传文件MultipartFile以及实体对象亲测可行 1. 报错 java.lang.IllegalStateException: Body parameter cannot be used with form parameters2. 解决参考 1. 报错 java.lang.IllegalStateException: Body parameter cannot be used with form parameters …

uniapp vue国际化 i18n

一、安装 vue-i18n npm i vue-i18n 二、新建i18n目录 1、en.json 内容 {"loginPage":{"namePh":"Please enter your login account","passwordPh":"Please enter password"} } 2、zh-CN.json 内容 {"loginPage&qu…

MacOS Mojave(苹果14系统) v10.14.6中文离线安装包

MacOS Mojave是一款先进的操作系统&#xff0c;它拥有诸多出色的特性。其中&#xff0c;夜间模式可以根据时间或用户设置自动切换&#xff0c;改变了UI、壁纸和窗口的样式&#xff0c;使界面在夜晚使用时更为舒适。另外&#xff0c;新的堆栈和群组功能让用户能更方便地分类和整…

软考系统架构师知识点集锦四:信息安全技术基础知识

一、考情分析 二、考点精讲 2.1信息加解密技术 2.1.1对称加密 概念:对称加密(又称为私人密钥加密/共享密钥加密) : 加密与解密使用同一密钥。特点:加密强度不高&#xff0c;但效率高;密钥分发困难。 (大量明文为了保证加密效率一般使用对称加密) 常见对称密钥加密算法:DES:…

PaddleX场景实战:PP-TS在电压预测场景上的应用

时间序列是按照时间发生的先后顺序进行排列的数据点序列&#xff0c;简称时序。时间序列预测即运用历史的多维数据进行统计分析&#xff0c;推测出事物未来的发展趋势。时间序列预测是最常见的时序问题之一&#xff0c;在很多行业都有其应用&#xff0c;且通常时序预测效果对业…

高防回源ip被源站拦截怎么办

​  在进行网站运营过程中&#xff0c;我们经常会遇到DDoS攻击等网络安全威胁。为了保护网站的正常运行&#xff0c;很多企业选择使用高防服务来应对这些攻击。有时候我们可能会遇到一个问题&#xff0c;就是高防回源IP被源站拦截的情况。 那么&#xff0c;当我们发现高防回源…

Vue(uniapp)父组件方法和子组件方法执行优先顺序

涉及到的知识点&#xff1a;watch监控&#xff1a;先看问题&#xff0c;父组件从后端通过$ajax获取数据&#xff0c;在将父组件将值传输给子组件&#xff0c;使用子组件使用created钩子函数获取数据&#xff0c;按自己的想法应该是父组件先获取后端数据&#xff0c;在传入给子组…