基于卷积神经网络的乳腺癌分类 深度学习 医学图像 计算机竞赛

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于卷积神经网络的乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示

    dataset trainbenignb1.jpgb2.jpg//malignantm1.jpgm2.jpg//  validationbenignb1.jpgb2.jpg//malignantm1.jpgm2.jpg//...

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

  import jsonimport mathimport osimport cv2from PIL import Imageimport numpy as npfrom keras import layersfrom keras.applications import DenseNet201from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoardfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.utils.np_utils import to_categoricalfrom keras.models import Sequentialfrom keras.optimizers import Adamimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import cohen_kappa_score, accuracy_scoreimport scipyfrom tqdm import tqdmimport tensorflow as tffrom keras import backend as Kimport gcfrom functools import partialfrom sklearn import metricsfrom collections import Counterimport jsonimport itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))malign_train = np.array(Dataset_loader('data/train/malignant',224))benign_test = np.array(Dataset_loader('data/validation/benign',224))malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))malign_train_label = np.ones(len(malign_train))benign_test_label = np.zeros(len(benign_test))malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)X_test = np.concatenate((benign_test, malign_test), axis = 0)Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])np.random.shuffle(s)X_train = X_train[s]Y_train = Y_train[s]s = np.arange(X_test.shape[0])np.random.shuffle(s)X_test = X_test[s]Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11)w=60h=40fig=plt.figure(figsize=(15, 15))columns = 4rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint])

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_reportclassification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/120152.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

死锁是什么?如何避免?如何排查?为什么这样排查 详细总结

1.死锁是什么 多个线程访问资源 线程加锁不当 会造成死锁。导致所有线程被阻塞,且无法解开 2.死锁的产生原因 1.加锁后忘记解锁 2.重复加锁,造成死锁 3.B锁内部调用函数A ,A运行是又加锁 导致A,B均无法运行 3.如何避免死锁 多检查…

C++中invoke与function的区别

C invoke invoke是C17标准引入的一个函数模板,用来调用可调用对象(Callable Object,如函数指针、函数对象、成员函数指针等)并返回结果。 invoke提供了统一的调用语法,无论可调用对象的类型是什么,都可以…

一文讲明白阿里云ace认证的含金量!

《中国云计算行业洞察与人才分析》显示,云计算领域人才月均薪酬在1W元以上的占比高达93.7%,3万元以上占比仍达24.7%。 相比之下,云计算人才远超互联网人才薪酬平均线,反映出市场对于其专业技术人才的需求。 云计算架构师、云计算…

2016年亚太杯APMCM数学建模大赛B题化学元素对变形钢筋性能的影响求解全过程文档及程序

2016年亚太杯APMCM数学建模大赛 B题 化学元素对变形钢筋性能的影响 原题再现 热轧带肋钢筋通常被称为变形钢筋,它主要用于钢筋混凝土构件的骨架,在使用中需要一定的机械强度、弯曲和变形性能、制造焊接性。钢中的化学成分是影响热轧钢最终组织性能的基…

Go 命令大全:全面解析与实践

一、Go命令全列表 在这部分,我们将通过一个表格来快速浏览Go语言的所有内建命令及其基本功能。这些命令涵盖了从代码构建、测试,到依赖管理和其他工具等方面。 命令功能描述go build编译Go源文件go run编译并运行Go程序go get下载并安装依赖或项目go m…

使用Typecho搭建个人博客网站,并内网穿透实现公网访问——“cpolar内网穿透”

使用Typecho搭建个人博客网站,并内网穿透实现公网访问 文章目录 使用Typecho搭建个人博客网站,并内网穿透实现公网访问前言1. 安装环境2. 下载Typecho3. 创建站点4. 访问Typecho5. 安装cpolar6. 远程访问Typecho7. 固定远程访问地址8. 配置typecho 前言 …

使用DBSyncer实现增量Mysql到Mysql的数据同步_DBSyncer1.2.4版本---数据同步之DBSyncer工作笔记006

之前都是用来postgresql到mysql的同步,需要配置postgresql的复制槽,对于mysq来说,需要配置: mysql启用binlog: https://gitee.com/ghi/dbsyncer/wikis/%E6%93%8D%E4%BD%9C%E6%89%8B%E5%86%8C/%E6%97%A5%E5%BF%97%E9%85%8D%E7%BD%AE%EF%BC%88%E6%95%B0%E6%8D%AE%E6%BA%90%EF%B…

【Linux】Centos yum源替换

YUM是基于RPM包管理,能够从指定的服务器自动下载RPM包并且安装,可以自动处理依赖性关系,并且一次安装所有依赖的软件包,无须繁琐地一次次下载、安装。 CentOS 8操作系统版本结束了生命周期(EOL)&#xff0…

[论文阅读]Point Density-Aware Voxels for LiDAR 3D Object Detection(PDV)

PDV Point Density-Aware Voxels for LiDAR 3D Object Detection 论文网址:PDV 论文代码:PDV 简读论文 摘要 LiDAR 已成为自动驾驶中主要的 3D 目标检测传感器之一。然而,激光雷达的发散点模式随着距离的增加而导致采样点云不均匀&#x…

sharepoint2016-2019升级到sharepoint订阅版

一、升级前准备: 要建立新的sharepoint订阅版环境,需求如下: 1.单服务器硬件需求CPU 4核,内存24G以上,硬盘300G(根据要迁移的数量来扩容大小等); 2.操作系统需要windows server 20…

yum--centos 和apt --ubuntu

centos安装软件 搜索语法:yum -y search 软件名称 安装软件前可以先去搜一下看看能用yum中有这个软件吗 安装语法:yum -y install 软件名称 写上 -y 意思是不用手动确认,直接安装 卸载语法:yum -y remove 软件名称 注…

Linux系列讲解 —— VIM配置与美化

目录 1. Vim基本配置2. 插件管理器Vundle2.1 下载Vundle2.2 在vimrc中添加Vundle的配置 3. Vundle的使用3.1 安装常用插件3.1.1 NERDTree 3.2 卸载插件 1. Vim基本配置 1.1 配置文件 vim的配置文件有两处,请根据实际情况选择修改哪个。 (1) 全局配置文件&#xff…

JVM相关的面试题

一、什么是程序计数器 二、简要的介绍一下堆 三、什么是虚拟机栈 四、能不能解释下方法区 五、你听过直接内存吗? 六、什么是类加载器,类加载器有哪些 七、什么是双亲委派模型 八、JVM为什么采用双亲委派机制 九、类装载的执行过程 十、对象什么时候被垃…

MATLAB中创建并计算多项式

目录 表示多项式 多项式的计算 此示例说明如何在 MATLAB 中将多项式表示为向量以及根据相关点计算多项式。 表示多项式 MATLAB 将多项式表示为行向量,其中包含按降幂排序的系数。例如,三元素向量 p [p2 p1 p0]; 表示多项式: 创建一个向量…

使用BufferWriter进行文件的写入操作

public class BufferedWirter_ {public static void main(String[] args) throws IOException {String filepath "e:\\ABC.txt";//创建BufferedWrite对象BufferedWriter bufferedWriter new BufferedWriter(new FileWriter(filepath,true));//BufferedWriter 并没有…

pycharm运行R语言脚本(环境安装)

文章目录 简介1. pycharm安装插件2. 安装R语言解释器2.1下载安装包2.2具体安装过程 3.编辑环境变量4.pycharm中配置安装好的R语言解释器 简介 pycharm 安装 R language for Intellij R language for Intellij 是一个插件,它为Intellij IDEA集成开发环境添加了对R语…

PowerPC T2080部分板卡产品介绍

T2080是NXP公司PowerPC T系列的中高端芯片,它具备4核8线程的E6500 高性能CPU核,同时具备8组10Gb和8组8Gb Serdes Lanes,Serdes可复用成SRIO、PCIE、XFI、SGMII接口,因此T2080具有很强的数据处理能力和广泛的总线互联能力。 科技的…

elementui时间日期组件右边自定义图标

效果 改为 首先是将左边的清除图标关闭 然后是将右边的图标设置为display:none,设置宽度,左右内边距 最后是 mounted() {/*思路:通过document文档,选中日期时间选择器元素,然后创建一个i标签,并指定其类…

OkHttp网络框架深入理解-SSL握手与加密

OkHttp简介 由Square公司贡献的一个处理网络请求的开源项目,是目前Android使用最广泛的网络框架。从Android4.4开始HttpURLConnection的底层实现采用的是OkHttp。 特点: 支持HTTP/2并允许对同一主机的所有请求共享一个套接字通过连接池,减少了请求延迟…

ENSP模拟CE12800 SSH一键配置小工具

平时做自动化开发实验都是以SSH连接为基底的,经常做完一个实验新建实验又要去重新配置SSH,就会比较麻烦,所以自己做了个偷懒小工具分享给大家 使用方法: 1.小工具图 2.拓扑图 拓扑图 保证1/0/0口和云连接 3.小工具各个控件介绍 3.1 串口号:右键点击拓扑图中的12800交换机,…