Kafka第二课-代码实战、参数配置详解、设计原理详解

一、代码实战

一、普通java程序实战

  1. 引入依赖
<dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.4.1</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.1.41</version></dependency><dependency><groupId>ch.qos.logback</groupId><artifactId>logback-core</artifactId><version>1.1.3</version></dependency><dependency><groupId>ch.qos.logback</groupId><artifactId>logback-classic</artifactId><version>1.1.1</version></dependency></dependencies>
  1. 生产者代码以及参数详解
public class MsgProducer {private final static String TOPIC_NAME = "my-replicated-topic-1";public static void main(String[] args) throws InterruptedException, ExecutionException {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.85.200:9092,192.168.85.200:9093,192.168.85.200:9094");/*发出消息持久化机制参数(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。(3)acks=-1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。*/props.put(ProducerConfig.ACKS_CONFIG, "1");/*发送失败会重试,默认重试间隔100ms,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,比如网络抖动,所以需要在接收者那边做好消息接收的幂等性处理*/props.put(ProducerConfig.RETRIES_CONFIG, 3);//重试间隔设置props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);//设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MBprops.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);/*kafka本地线程会从缓冲区取数据,批量发送到broker,设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去*/props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);/*默认值是0,意思就是消息必须立即被发送,但这样会影响性能一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长*/props.put(ProducerConfig.LINGER_MS_CONFIG, 10);//把发送的key从字符串序列化为字节数组props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());//把发送消息value从字符串序列化为字节数组props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());Producer<String, String> producer = new KafkaProducer<String, String>(props);int msgNum = 5;
//        final CountDownLatch countDownLatch = new CountDownLatch(msgNum);for (int i = 1; i <= msgNum; i++) {Order order = new Order(i, 100 + i, 1, 1000.00);//指定发送分区
//           ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME
//                    , 0, order.getOrderId().toString(), JSON.toJSONString(order));//未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNumProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));//等待消息发送成功的同步阻塞方法RecordMetadata metadata = producer.send(producerRecord).get();System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset());//异步回调方式发送消息/*producer.send(producerRecord, new Callback() {public void onCompletion(RecordMetadata metadata, Exception exception) {if (exception != null) {System.err.println("发送消息失败:" + exception.getStackTrace());}if (metadata != null) {System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset());}countDownLatch.countDown();}});*/}//        countDownLatch.await(5, TimeUnit.SECONDS);producer.close();}
}

消费者代码以及参数详解


public class MsgConsumer {private final static String TOPIC_NAME = "my-replicated-topic-1";private final static String CONSUMER_GROUP_NAME = "testGroup";public static void main(String[] args) throws Exception {Properties props = new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.85.200:9092,192.168.85.200:9093,192.168.85.200:9094");// 消费分组名props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);// 是否自动提交offset,默认就是true/*props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");// 自动提交offset的间隔时间props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");*/props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");/*当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费latest(默认) :只消费自己启动之后发送到主题的消息earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)*///props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");/*consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将rebalance方案下发给consumer,这个时间可以稍微短一点*/props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);/*服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,对应的Partition也会被重新分配给其他consumer,默认是10秒*/props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);//一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 50);/*如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,会将其踢出消费组,将分区分配给别的consumer消费*/props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);consumer.subscribe(Arrays.asList(TOPIC_NAME));// 消费指定分区//consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));//消息回溯消费/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*///指定offset消费/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*///从指定时间点开始消费/*List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);//从1小时前开始消费long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;Map<TopicPartition, Long> map = new HashMap<>();for (PartitionInfo par : topicPartitions) {map.put(new TopicPartition(TOPIC_NAME, par.partition()), fetchDataTime);}Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {TopicPartition key = entry.getKey();OffsetAndTimestamp value = entry.getValue();if (key == null || value == null) continue;Long offset = value.offset();System.out.println("partition-" + key.partition() + "|offset-" + offset);System.out.println();//根据消费里的timestamp确定offsetif (value != null) {consumer.assign(Arrays.asList(key));consumer.seek(key, offset);}}*/while (true) {/** poll() API 是拉取消息的长轮询*/ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n", record.partition(),record.offset(), record.key(), record.value());}if (records.count() > 0) {// 手动同步提交offset,当前线程会阻塞直到offset提交成功// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了consumer.commitSync();// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑/*consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {if (exception != null) {System.err.println("Commit failed for " + offsets);System.err.println("Commit failed exception: " + exception.getStackTrace());}}});*/}}}
}
  1. 实体类

public class Order {private Integer orderId;private Integer productId;private Integer productNum;private Double orderAmount;public Order() {}public Order(Integer orderId, Integer productId, Integer productNum, Double orderAmount) {super();this.orderId = orderId;this.productId = productId;this.productNum = productNum;this.orderAmount = orderAmount;}public Integer getOrderId() {return orderId;}public void setOrderId(Integer orderId) {this.orderId = orderId;}public Integer getProductId() {return productId;}public void setProductId(Integer productId) {this.productId = productId;}public Integer getProductNum() {return productNum;}public void setProductNum(Integer productNum) {this.productNum = productNum;}public Double getOrderAmount() {return orderAmount;}public void setOrderAmount(Double orderAmount) {this.orderAmount = orderAmount;}
}

二、整合springboot实战

  1. 引入基本依赖
<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId></dependency></dependencies>
  1. 配置application.yml
server:port: 8080spring:kafka:bootstrap-servers: 192.168.85.200:9092,192.168.85.200:9093,192.168.85.200:9094producer: # 生产者retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送batch-size: 16384buffer-memory: 33554432acks: 1# 指定消息key和消息体的编解码方式key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: default-groupenable-auto-commit: falseauto-offset-reset: earliestkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializerlistener:# 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交# RECORD# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交# BATCH# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交# TIME# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交# COUNT# TIME | COUNT 有一个条件满足时提交# COUNT_TIME# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交# MANUAL# 手动调用Acknowledgment.acknowledge()后立即提交# MANUAL_IMMEDIATEack-mode: MANUAL_IMMEDIATE

当配置ack-mode: MANUAL_IMMEDIATE时,需要手动在消费者提交offset,否则会一直重复消费

  1. 消费者

@Component
public class MyConsumer {/*** @KafkaListener(groupId = "testGroup", topicPartitions = {*             @TopicPartition(topic = "topic1", partitions = {"0", "1"}),*             @TopicPartition(topic = "topic2", partitions = "0",*                     partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))*     },concurrency = "6")*  //concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数* @param record*/@KafkaListener(topics = "my-replicated-topic",groupId = "testGroup")public void listenZhugeGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {String value = record.value();System.out.println(value);System.out.println(record);//手动提交offsetack.acknowledge();}}
  1. 测试,访问生产者控制层,可以自动监听到消费者
    在这里插入图片描述

二、Kafka设计原理详解(面试常问,不影响实际开发)

在这里插入图片描述
Kafka核心总控制器Controller
在Kafka集群中会有一个或者多个broker,其中有一个broker会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态。

  • 当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。
  • 当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。
  • 当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责让新分区被其他节点感知到。

Controller选举机制
在kafka集群启动的时候,会自动选举一台broker作为controller来管理整个集群,选举的过程是集群中每个broker都会尝试在zookeeper上创建一个 /controller 临时节点,zookeeper会保证有且仅有一个broker能创建成功,这个broker就会成为集群的总控器controller。
查看zookeeper,发现我的1服务器是控制器
当这个controller角色的broker宕机了,此时zookeeper临时节点会消失,集群里其他broker会一直监听这个临时节点,发现临时节点消失了,就竞争再次创建临时节点,就是我们上面说的选举机制,zookeeper又会保证有一个broker成为新的controller。
具备控制器身份的broker需要比其他普通的broker多一份职责,具体细节如下:

  1. 监听broker相关的变化。为Zookeeper中的/brokers/ids/节点添加BrokerChangeListener,用来处理broker增减的变化。
  2. 监听topic相关的变化。为Zookeeper中的/brokers/topics节点添加TopicChangeListener,用来处理topic增减的变化;为Zookeeper中的/admin/delete_topics节点添加TopicDeletionListener,用来处理删除topic的动作。
  3. 从Zookeeper中读取获取当前所有与topic、partition以及broker有关的信息并进行相应的管理。对于所有topic所对应的Zookeeper中的/brokers/topics/[topic]节点添加PartitionModificationsListener,用来监听topic中的分区分配变化。
  4. 更新集群的元数据信息,同步到其他普通的broker节点中。
    总结来说:就是监听其他服务器的情况,监听topic的情况,监听分区partition的情况,监听元数据

Partition副本选举Leader机制
kafka有两个选举,上面那个是选举整个集群的控制器,和这个选取单个分区Partition的Leader不是一回事,不要混淆!!!

  • controller感知到分区leader所在的broker挂了(controller监听了很多zk节点可以感知到broker存活),controller会从ISR列表(参数unclean.leader.election.enable=false的前提下)里挑第一个broker作为leader(第一个broker最先放进ISR列表,可能是同步数据最多的副本)
  • 如果参数unclean.leader.election.enable为true,代表在ISR列表里所有副本都挂了的时候可以在ISR列表以外的副本中选leader,这种设置,可以提高可用性,但是选出的新leader有可能数据少很多。

副本进入ISR列表有两个条件:

  1. 副本节点不能产生网络分区,必须能与zookeeper保持会话以及跟leader副本网络连通
  2. 副本能复制leader上的所有写操作,并且不能落后太多。(与leader副本同步滞后的副本,是由 replica.lag.time.max.ms 配置决定的,超过这个时间都没有跟leader同步过的一次的副本会被移出ISR列表)

消费者消费消息的offset记录机制
每个consumer会定期将自己消费分区的offset提交给kafka内部topic:__consumer_offsets,提交过去的时候,key是consumerGroupId+topic+分区号,value就是当前offset的值,kafka会定期清理topic里的消息,最后就保留最新的那条数据

因为__consumer_offsets可能会接收高并发的请求,kafka默认给其分配50个分区(可以通过offsets.topic.num.partitions设置),这样可以通过加机器的方式抗大并发。

通过如下公式可以选出consumer消费的offset要提交到__consumer_offsets的哪个分区

公式:hash(consumerGroupId) % __consumer_offsets主题的分区数

消费者Rebalance分区分配策略:
主要有三种rebalance的策略:range、round-robin、sticky。
Kafka 提供了消费者客户端参数partition.assignment.strategy 来设置消费者与订阅主题之间的分区分配策略。默认情况为range分配策略。
假设一个主题有10个分区(0-9),现在有三个consumer消费:
range策略就是按照分区序号排序,假设 n=分区数/消费者数量 = 3, m=分区数%消费者数量 = 1,那么前 m 个消费者每个分配 n+1 个分区,后面的(消费者数量-m )个消费者每个分配 n 个分区。
比如分区0-3给一个consumer,分区4-6给一个consumer,分区7-9给一个consumer。

round-robin策略就是轮询分配,比如分区0、3、6、9给一个consumer,分区1、4、7给一个consumer,分区2、5、8给一个consumer

sticky策略初始时分配策略与round-robin类似,但是在rebalance的时候,需要保证如下两个原则。
1)分区的分配要尽可能均匀 。
2)分区的分配尽可能与上次分配的保持相同。
当两者发生冲突时,第一个目标优先于第二个目标 。这样可以最大程度维持原来的分区分配的策略。
比如对于第一种range情况的分配,如果第三个consumer挂了,那么重新用sticky策略分配的结果如下:
consumer1除了原有的0~3,会再分配一个7
consumer2除了原有的4~6,会再分配8和9

Rebalance过程如下
当有消费者加入消费组时,消费者、消费组及组协调器之间会经历以下几个阶段。
在这里插入图片描述
第一阶段:选择组协调器
组协调器GroupCoordinator:每个consumer group都会选择一个broker作为自己的组协调器coordinator,负责监控这个消费组里的所有消费者的心跳,以及判断是否宕机,然后开启消费者rebalance。
consumer group中的每个consumer启动时会向kafka集群中的某个节点发送 FindCoordinatorRequest 请求来查找对应的组协调器GroupCoordinator,并跟其建立网络连接。
组协调器选择方式:
consumer消费的offset要提交到__consumer_offsets的哪个分区,这个分区leader对应的broker就是这个consumer group的coordinator

第二阶段:加入消费组JOIN GROUP
在成功找到消费组所对应的 GroupCoordinator 之后就进入加入消费组的阶段,在此阶段的消费者会向 GroupCoordinator 发送 JoinGroupRequest 请求,并处理响应。然后GroupCoordinator 从一个consumer group中选择第一个加入group的consumer作为leader(消费组协调器),把consumer group情况发送给这个leader,接着这个leader会负责制定分区方案。

第三阶段( SYNC GROUP)
consumer leader通过给GroupCoordinator发送SyncGroupRequest,接着GroupCoordinator就把分区方案下发给各个consumer,他们会根据指定分区的leader broker进行网络连接以及消息消费。

producer发布消息机制剖析
1、写入方式
producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。
2、消息路由
producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为:

  1. 指定了 patition,则直接使用;
  2. 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition
  3. patition 和 key 都未指定,使用轮询选出一个 patition。

3、写入流程
在这里插入图片描述

producer 先从 zookeeper 的 “/brokers/…/state” 节点找到该 partition 的 leader
producer 将消息发送给该 leader
leader 将消息写入本地 log
followers 从 leader pull 消息,写入本地 log 后 向leader 发送 ACK
leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK

HW与LEO详解

HW俗称高水位,HighWatermark的缩写,取一个partition对应的ISR中最小的LEO(log-end-offset)作为HW,consumer最多只能消费到HW所在的位置。另外每个replica都有HW,leader和follower各自负责更新自己的HW的状态。对于leader新写入的消息,consumer不能立刻消费,leader会等待该消息被所有ISR中的replicas同步后更新HW,此时消息才能被consumer消费。这样就保证了如果leader所在的broker失效,该消息仍然可以从新选举的leader中获取。对于来自内部broker的读取请求,没有HW的限制。
在这里插入图片描述
由此可见,Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的follower都复制完,这条消息才会被commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follower都还没有复制完,落后于leader时,突然leader宕机,则会丢失数据。而Kafka的这种使用ISR的方式则很好的均衡了确保数据不丢失以及吞吐率。再回顾下消息发送端对发出消息持久化机制参数acks的设置,我们结合HW和LEO来看下acks=1的情况
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1193.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ceph的安装部署

文章目录 一、存储基础1.1 单机存储设备1.2 单机存储的问题1.3分布式存储&#xff08;软件定义的存储 SDS&#xff09; 二、Ceph 简介2.1 Ceph 优势2.2 Ceph 架构2.3 Ceph 核心组件2.4 Pool、PG 和 OSD 的关系&#xff1a;2.5 OSD 存储后端2.6 Ceph 数据的存储过程2.7 Ceph 版本…

面向初学者的卷积神经网络

卷积神经网络在机器学习中非常重要。如果你想做计算机视觉或图像识别任务&#xff0c;你根本离不开它们。但是很难理解它们是如何工作的。 在这篇文章中&#xff0c;我们将讨论卷积神经网络背后的机制、它的优点和应用领域。 什么是神经网络&#xff1f; 首先&#xff0c;让…

架构训练营:3-3设计备选方案与架构细化

3架构中期 什么是备选架构&#xff1f; 备选架构定义了系统可行的架构模式和技术选型 备选方案筛选过程 头脑风暴 &#xff1a;对可选技术进行排列组合&#xff0c;得到可能的方案 红线筛选&#xff1a;根据系统明确的约束和限定&#xff0c;一票否决某些方案&#xff08;主要…

Docker 安装 Nginx,并实现负载均衡

1、获取 nginx 的镜像 # 默认是latest版本docker pull nginx 2、运行 nginx 容器 docker run --name nginx-80 -p 80:80 --rm -d nginx# --name nginx-80 设定容器的名称# -p 80:80 端口进行映射&#xff0c;将本地的80端口映射到容器内部的80端口# --rm 表示容器退出后直接…

Vue中v-html用法以及指令汇总

操作数组的方法 &#xff1a; push&#xff1a;数组最后位置新增元素 pop&#xff1a; 删除最后一个元素 shift&#xff1a; 删除第一个元素 unshift&#xff1a;往前面加一个元素 splice&#xff1a;在数组的指定位置插入、删除、替换一个元素 sort&#xff1a; 数组排序…

卷积神经网络(CNN)原理详解

近些年人工智能发展迅速&#xff0c;在图像识别、语音识别、物体识别等各种场景上深度学习取得了巨大的成功&#xff0c;例如AlphaGo击败世界围棋冠军&#xff0c;iPhone X内置了人脸识别解锁功能等等&#xff0c;很多AI产品在世界上引起了很大的轰动。 而其中 卷积神经网络&am…

【微信小程序-uniapp】CustomButton 自定义常用吸底按钮组件

1. 效果图 2. 组件完整代码 <template><view:class="[custom-btn flex-center, size == big ? big : mid, type == primary ? primary : info, plain ? plain : , disabled ? disabled : , round ? round : ]"

神经网络之VGG

目录 1.VGG的简单介绍 1.2结构图 3.参考代码 VGGNet-16 架构&#xff1a;完整指南 |卡格尔 (kaggle.com) 1.VGG的简单介绍 经典卷积神经网络的基本组成部分是下面的这个序列&#xff1a; 带填充以保持分辨率的卷积层&#xff1b; 非线性激活函数&#xff0c;如ReLU&a…

挖矿记录+解决方案:利用GitLab组件对服务器进行挖矿导致CPU占用200%

文章目录 什么是云服务器挖矿?事件记录事件分析产生影响解决方案后期预防什么是云服务器挖矿? 云服务器挖矿是指利用云服务器从事赚取比特币的活动。比特币是一种虚拟数字货币,挖矿是将一段时间内比特币系统中发生的交易进行确认,并记录在区块链上形成新区块的过程。 用于…

Mybatis:传参+提交事务(自动or手动)+sql多表关联查询(两种方法)

目录 一、参数两种类型&#xff1a; 二、传参的几种方法&#xff1a; 三、提交事务 四、sql多表关联查询(两种方法) 一、参数两种类型&#xff1a; 1.#{参数}&#xff1a;预编译方式&#xff0c;更安全&#xff0c;只用于向sql中传值&#xff1b; select * from admin w…

只需一个提示词解除GPT-4的字符限制!

ChatGPT的内存有限,GPT-3.5-turbo的限制为4897个令牌,而GPT-4的最大限制为8192。如果您在使用GPT-4进行聊天时超过8192个令牌(约6827个单词),它就会开始遗忘。我想出了一种新的技巧,可以轻松将对话扩展10倍。 这种技巧不会将对话中的每个字都保存到内存中。当您去开会时,会有人…

如何解除“无法完成操作 因为文件包含病毒或潜在垃圾软件”

当运行软件遇到“无法完成操作 因为文件包含病毒或潜在垃圾软件”时&#xff0c;如何解决&#xff1f;如果确认此软件不是病毒软件&#xff0c;那么可以按照如下方法进行解决&#xff1a; 1&#xff1a;关闭防火墙 控制面板-系统和安全-Windows Defender防火墙-自定义设置&am…

分布式运用存储系统Ceph

一、ceph的相关知识 1.ceph介绍与简介 Ceph是一个开源的分布式存储解决方案&#xff0c;旨在提供可扩展性、高性能和强大的数据可靠性。它采用了一种分布式对象存储架构&#xff0c;能够同时提供块存储和文件存储的功能。 Ceph使用C语言开发&#xff0c;是一个开放、自我修复和…

MySQL数据表高级操作

一、克隆/复制数据表二、清空表&#xff0c;删除表内的所有数据删除小结 三、创建临时表四、MySQL中6种常见的约束1、外键的定义2、创建外键约束作用3、创建主表test44、创建从表test55、为主表test4添加一个主键约束。主键名建议以"PK_”开头。6、为从表test5表添加外键&…

数据结构与算法——顺序表(顺序存储结构)及初始化详解

顺序表&#xff0c;全名顺序存储结构&#xff0c;是线性表的一种。通过《什么是线性表》一节的学习我们知道&#xff0c;线性表用于存储逻辑关系为“一对一”的数据&#xff0c;顺序表自然也不例外。 不仅如此&#xff0c;顺序表对数据的物理存储结构也有要求。顺序表存储数据…

【论文阅读】TransCAM: Transformer Attention-based CAM Refinement for WSSS

分享一篇阅读的用于弱监督分割的论文 论文标题&#xff1a; TransCAM: Transformer Attention-based CAM Refinement for Weakly Supervised Semantic Segmentation 作者信息&#xff1a; 代码地址&#xff1a; https://github.com/liruiwen/TransCAM Abstract 大多数现有…

【React】- 组件生命周期连续渲染两次问题

最近在整理生命周期相关的知识内容&#xff0c;然后发现一个奇怪的现象&#xff0c;即组件的生命周期会运行2次&#xff01;经过确认不是代码问题&#xff0c;于是开始找度娘&#xff0c;终于找到其原因-React中的严格模式&#xff0c;在这里记录一下 一、问题重现 如图所示&a…

EMC学习笔记(十五)射频PCB的EMC设计(二)

射频PCB的EMC设计&#xff08;二&#xff09; 1.滤波1.1 电源和控制线的滤波1.2 频率合成器数据线、时钟线、使能线的滤波 2.接地2.1 接地分类2.2 大面积接地2.3 分组就近接地2.4 射频器件接地2.5 接地时应该注意的问题2.6 接地平面的分布 1.滤波 1.1 电源和控制线的滤波 随着…

人工智能自然语言处理:N-gram和TF-IDF模型详解

人工智能自然语言处理&#xff1a;N-gram和TF-IDF模型详解 1.N-gram 模型 N-Gram 是一种基于统计语言模型的算法。它的基本思想是将文本里面的内容按照字节进行大小为 N 的滑动窗口操作&#xff0c;形成了长度是 N 的字节片段序列。 每一个字节片段称为 gram&#xff0c;对所…

SpringBoot 整合redis + Aop防止重复提交 (简易)

1.redis的安装 redis下载 解压 安装 # wget http://download.redis.io/releases/redis-6.0.8.tar.gz # tar xzf redis-6.0.8.tar.gz # cd redis-6.0.8 # make 看一下就会有 进入redis-6.0.8下的src目录 [rootVM-16-8-centos redis]# cd redis-6.0.8 [rootVM-16-8-centos re…