K8s 部署 CNI 网络组件+k8s 多master集群部署+负载均衡

------------------------------ 部署 CNI 网络组件 ------------------------------
---------- 部署 flannel ----------
K8S 中 Pod 网络通信:
●Pod 内容器与容器之间的通信
在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命名空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信
每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0/cni0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信
Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network:
叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来。
通过Overlay技术(可以理解成隧道技术),在原始报文外再包一层四层协议(UDP协议),通过主机网络进行路由转发。这种方式性能有一定损耗,主要体现在对原始报文的修改。目前Overlay主要采用VXLAN。

VXLAN:
将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel:
Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 UDP、VXLAN(隧道转发)、Host-gw(路由条目转发,不支持云环境) 3种数据转发方式。

#Flannel UDP 模式的工作原理:
数据从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel0 接口,flanneld 服务监听在 flannel0 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 A 的 flanneld 服务将原本的数据内容封装到 UDP 报文中, 根据自己的路由表通过物理网卡投递给目的节点主机 B 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel0 接口, 之后被转发到目的主机的 docker0/cni0 网桥,最后就像本机容器通信一样由 docker0/cni0 转发到目标容器。
在这里插入图片描述

#ETCD 之 Flannel 提供说明:
存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 UDP 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 VXLAN 模式差。

#VXLAN 模式:
VXLAN 模式使用比较简单,flannel 会在各节点生成一个 flannel.1 的 VXLAN 网卡(VTEP设备,负责 VXLAN 封装和解封装)。
VXLAN 模式下作是由内核进行的。flannel 不转发数据,仅动态设置 ARP 表和 MAC 表项。
UDP 模式的 flannel0 网卡是三层转发,使用 flannel0 时在物理网络之上构建三层网络,属于 ip in udp ;VXLAN封包与解包的工 模式是二层实现,overlay 是数据帧,属于 mac in udp 。

#Flannel VXLAN 模式跨主机的工作原理:
1、数据帧从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel.1 接口
2、flannel.1 收到数据帧后添加 VXLAN 头部,封装在 UDP 报文中
3、主机 A 通过物理网卡发送封包到主机 B 的物理网卡中
4、主机 B 的物理网卡再通过 VXLAN 默认端口 4789 转发到 flannel.1 接口进行解封装
5、解封装以后,内核将数据帧发送到 cni0,最后由 cni0 发送到桥接到此接口的容器 B 中。
在这里插入图片描述

//在 node01 节点上操作

#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar  #执行这个命令后,Docker 将会从 "flannel.tar" 文件中加载 Docker 镜像,并将其添加到本地的 Docker 镜像库中,以便后续使用。

在这里插入图片描述

mkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

在这里插入图片描述

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
#kubectl 将会读取并解析 "kube-flannel.yml" 文件中的配置信息,并将其应用到 Kubernetes 集群中。这个 YAML 文件通常包含了 Flannel 网络插件的配置,用于设置集群中的网络通信。
kubectl apply -f kube-flannel.yml 

在这里插入图片描述

kubectl get pods -n kube-system

在这里插入图片描述

kubectl get nodes

在这里插入图片描述
---------- 部署 Calico ----------
#k8s 组网方案对比:
●flannel方案
需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

●calico方案
Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发。
采用直接路由的方式,这种方式性能损耗最低,不需要修改报文数据,但是如果网络比较复杂场景下,路由表会很复杂,对运维同事提出了较高的要求。

#Calico 主要由三个部分组成:
Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
BIRD:负责分发路由规则,类似路由器。
Confd:配置管理组件。

#Calico 工作原理:
Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则, 用于接收传入的 IP 包。
有了这样的 veth pair 设备以后,容器发出的 IP 包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由, 这些节点我们叫做 BGP Peer。

目前比较常用的CNI网络组件是flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。
在这里插入图片描述

//在 master01 节点上操作
#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
vim calico.yaml
#修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样- name: CALICO_IPV4POOL_CIDRvalue: "10.244.0.0/16"        #Calico 默认使用的网段为 192.168.0.0/16

在这里插入图片描述
在这里插入图片描述

#kubectl 将会读取并解析 "calico.yaml" 文件中的配置信息,并将其应用到 Kubernetes 集群中。这个 YAML 文件通常包含了 Calico 网络插件的配置,用于设置集群中的网络通信。Calico 是一种常用的网络插件,用于实现 Kubernetes 集群中的网络策略和网络隔离。
kubectl apply -f calico.yaml

在这里插入图片描述

#获得 "kube-system" 命名空间中所有 Pod 的详细信息
kubectl get pods -n kube-system

详细解释:
“kubectl get pods -n kube-system” 是一个用于在 Kubernetes 集群中获取 kube-system 命名空间下的所有 Pod 的命令。

  • “kubectl” 是 Kubernetes 命令行工具,用于与 Kubernetes 集群进行交互。
  • “get” 是 kubectl 的一个子命令,用于获取 Kubernetes 资源的信息。
  • “pods” 表示我们要获取的资源类型是 Pod。
  • “-n kube-system” 是一个参数,指定了要获取的 Pod 所在的命名空间是 kube-system。

通过执行这个命令,我们可以获取到 kube-system 命名空间下的所有 Pod 的相关信息,例如 Pod 的名称、状态、IP 地址、所在节点等。这些信息对于管理和监控 Kubernetes 集群非常有用。
在这里插入图片描述
#等 Calico Pod 都 Running,节点也会准备就绪

#获取 Kubernetes 集群中的节点信息。
kubectl get nodes

在这里插入图片描述

---------- node02 节点部署 ----------
//在 node01 节点上操作

cd /opt/
scp kubelet.sh proxy.sh root@20.0.0.103:/opt/
#将本地的 "/opt/cni" 目录(包括其中的文件和子目录)复制到远程服务器的 "/opt/" 目录下
scp -r /opt/cni root@20.0.0.103:/opt/

在这里插入图片描述

//在 node02 节点上操作

#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
#执行这个命令后,将会运行名为 "kubelet.sh" 的脚本文件,并将 "20.0.0.103" 作为参数传递给脚本。
./kubelet.sh 20.0.0.103

在这里插入图片描述

//在 master01 节点上操作

kubectl get csr

在这里插入图片描述

#通过 CSR 请求

kubectl certificate approve node-csr-uPmL1JkOA13jjbyNaG_au0w6pxMUaIxko0m5KAagz0A
#获取 Kubernetes 集群中的证书签名请求(Certificate Signing Request,CSR)列表。
kubectl get csr

在这里插入图片描述

#加载 ipvs 模块 (node02上)

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

在这里插入图片描述

#使用proxy.sh脚本启动proxy服务

cd /opt/
chmod +x proxy.sh
#在20.0.0.103上启动代理
./proxy.sh 20.0.0.103

在这里插入图片描述

#查看群集中的节点状态

kubectl get nodes

在这里插入图片描述
------------------------------ 部署 CoreDNS ------------------------------
CoreDNS:可以为集群中的 service 资源创建一个域名 与 IP 的对应关系解析

//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中

cd /opt
docker load -i coredns.tar

在这里插入图片描述
//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS

cd /opt/k8s
kubectl apply -f coredns.yaml

在这里插入图片描述

kubectl get pods -n kube-system
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试

kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.localName:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local注:
如果出现以下报错
[root@master01 k8s]# kubectl run -it  --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
Error attaching, falling back to logs: unable to upgrade connection: Forbidden (user=system:anonymous, verb=create, resource=nodes, subresource=proxy)
Error from server (Forbidden): Forbidden (user=system:anonymous, verb=get, resource=nodes, subresource=proxy) ( pods/log sh)需要添加 rbac的权限  直接使用kubectl绑定  clusteradmin 管理员集群角色  授权操作权限[root@master01 k8s]# kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
clusterrolebinding.rbac.authorization.k8s.io/cluster-system-anonymous created

---------- master02 节点部署 ----------
#关闭防火墙

systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab #根据规划设置主机名
hostnamectl set-hostname master02

#在master添加hosts

cat >> /etc/hosts << EOF
20.0.0.101 master01
20.0.0.106 master02
20.0.0.102 node01
20.0.0.103 node02
EOF

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点

scp -r /opt/etcd/ root@20.0.0.106:/opt/
scp -r /opt/kubernetes/ root@20.0.0.106:/opt
scp -r /root/.kube root@20.0.0.106:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@20.0.0.106:/usr/lib/systemd/system/

在这里插入图片描述

//修改mater02配置文件kube-apiserver中的IP

vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://20.0.0.101:2379,https://20.0.0.102:2379,https://20.0.0.103:2379 \
--bind-address=20.0.0.106 \				#修改
--secure-port=6443 \
--advertise-address=20.0.0.106 \			#修改
......

在这里插入图片描述
//在 master02 节点上启动各服务并设置开机自启

systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

在这里插入图片描述
//在master02查看node节点状态

ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes

在这里插入图片描述

kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

在这里插入图片描述

------------------------------ 负载均衡部署 ------------------------------
//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
#在lb01(20.0.0.104)、lb02(20.0.0.105)节点上操作
//配置nginx的官方在线yum源,配置本地nginx的yum源

cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOFyum install nginx -y

在这里插入图片描述

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口

vim /etc/nginx/nginx.conf
events {worker_connections  1024;
}#添加
stream {log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';access_log  /var/log/nginx/k8s-access.log  main;upstream k8s-apiserver {server 20.0.0.101:6443;server 20.0.0.106:6443;}server {listen 6443;proxy_pass k8s-apiserver;}
}http {
......

在这里插入图片描述

//检查配置文件语法

nginx -t   

在这里插入图片描述
//启动nginx服务,查看已监听6443端口

systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 

在这里插入图片描述
//部署keepalived服务

yum install keepalived -y

//修改keepalived配置文件

vim /etc/keepalived/keepalived.conf
! Configuration File for keepalivedglobal_defs {# 接收邮件地址notification_email {acassen@firewall.locfailover@firewall.locsysadmin@firewall.loc}# 邮件发送地址notification_email_from Alexandre.Cassen@firewall.locsmtp_server 127.0.0.1smtp_connect_timeout 30router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}#添加一个周期性执行的脚本
vrrp_script check_nginx {script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}vrrp_instance VI_1 {state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUPinterface ens33			#指定网卡名称 ens33virtual_router_id 51	#指定vrid,两个节点要一致priority 100			#lb01节点的为 100,lb02节点的为 90advert_int 1authentication {auth_type PASSauth_pass 1111}virtual_ipaddress {20.0.0.100/24	#指定 VIP}track_script {check_nginx			#指定vrrp_script配置的脚本}
}

在这里插入图片描述
在这里插入图片描述
//创建nginx状态检查脚本

vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thensystemctl stop keepalived
fi

在这里插入图片描述

chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)

systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

在这里插入图片描述

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP

cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://20.0.0.100:6443

在这里插入图片描述

vim kubelet.kubeconfig
server: https://20.0.0.100:6443

在这里插入图片描述

vim kube-proxy.kubeconfig
server: https://20.0.0.100:6443

在这里插入图片描述

//重启kubelet和kube-proxy服务

systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态

netstat -natp | grep nginx

在这里插入图片描述
在 master01 节点上操作
//测试创建pod

kubectl run nginx --image=nginx

在这里插入图片描述

//查看Pod的状态信息

kubectl get podsNAME                    READY   STATUS              RESTARTS   AGE
nginx   0/1     ContainerCreating   0          33s   #正在创建中
kubectl get podsNAME                    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          80s  			#创建完成,运行中
kubectl get pods -o wideNAME                    READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE
nginx  1/1     Running   0          10m   172.17.36.2   192.168.80.15   <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 172.17.36.2

//这时在master01节点上查看nginx日志

kubectl logs nginx

------------------------------ 部署 Dashboard ------------------------------
Dashboard 介绍
仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如deployment,job,daemonset等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中

cd /opt/k8s

在这里插入图片描述

vim recommended.yaml#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:labels:k8s-app: kubernetes-dashboardname: kubernetes-dashboardnamespace: kubernetes-dashboard
spec:ports:- port: 443targetPort: 8443nodePort: 30001     #添加type: NodePort          #添加selector:k8s-app: kubernetes-dashboardkubectl apply -f recommended.yaml

在这里插入图片描述

#创建service account并绑定默认cluster-admin管理员集群角色

kubectl create serviceaccount dashboard-admin -n kube-systemkubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-adminkubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

在这里插入图片描述

#使用输出的token登录Dashboard

https://NodeIP:30001

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119122.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实验六:DHCP、DNS、Apache、FTP服务器的安装和配置

1. (其它) 掌握Linux下DHCP、DNS、Apache、FTP服务器的安装和配置&#xff0c;在Linux服务器上部署JavaWeb应用 完成单元八的实训内容。 1、安装 JDK 2、安装 MySQL 3、部署JavaWeb应用 安装jdk 教程连接&#xff1a;linux安装jdk8详细步骤-CSDN博客 Jdk来源&#xff1a;linu…

【Django 05】Django-DRF(ModelViewSet)、路由组件、自定义函数

1. Django-DRF&#xff08;ModelViewSet&#xff09; 1.1 DRF是什么&#xff1f; ModelViewSet 是 Django REST framework 提供的一个视图集类&#xff0c;它封装了常见的模型操作方法。 模型类提供了默认的增删改查功能。 它继承自 GenericViewSet、ListModelMixin、Retri…

基于pyenv和virtualenv搭建python多版本虚拟环境

pyenv简介 由于Python的依赖是基于site的&#xff0c;这对于生产环境来说&#xff0c;是一种简单而正确的方式&#xff0c;然而&#xff0c;对于我们的开发环境&#xff0c;基于这样的管理方式&#xff0c;带来了可怕的第三方依赖管理的难题&#xff0c;virtualenv适时出现了&a…

Altium Designer布局技巧

资料 快捷键 PCB导入原理图 验证工程 导入原理图 进入PCB编辑界面&#xff0c;设计→Import Changes from xxxx 多原理图多PCB 创建多个原理图、PCB 略反键点击原理图 勾选高级 选择原理图及目标PCB&#xff0c;点击确定 右键点击列表项&#xff0c;更新原理图&#xff0…

手机桌面待办事项APP推荐

每天&#xff0c;我们每个人都面临着繁琐的事务和任务&#xff0c;而手机成了我们日常生活中不可或缺的伙伴。手机上的待办事项工具像一个可靠的助手&#xff0c;可以帮助我们更好地记录、管理和完成任务。在手机桌面上使用的待办事项APP推荐用哪一个呢&#xff1f; 手机是我们…

服务容错框架Sentinel入门

概述 Sentinel&#xff0c;阿里开源的一套用于服务容错的综合性解决方案。它以流量为切入点&#xff0c;从流量控制、熔断降级、系统负载保护等多个维度来保护服务的稳定性。分布式系统的流量防卫兵。 特征: 丰富的应用场景&#xff1a;秒杀&#xff08;即突发流量控制在系统…

更加轻松处理相同文件名!覆盖复制操作全新升级,避免重复命名!

亲爱的用户&#xff0c;您是否在进行覆盖复制操作时&#xff0c;常常因为相同的文件名而无法正常完成任务&#xff1f;现在&#xff0c;我们为您推出了全新的覆盖复制升级版&#xff0c;让您更加轻松处理相同文件名&#xff0c;避免重复命名的尴尬局面&#xff01; 首先第一步…

el-date-picker如何回显

后端传输过来起止时间&#xff0c;需要回显在 el-date-picker中 未修改前的代码&#xff1a; 问题整改&#xff1a;需要将时间转换为Date类型 修改后的代码 setTime(date){if (date!null){this.value.push(new Date(date.startTime))this.value.push(new Date(date.endTime))c…

C++智能指针[下](shared_ptr/weak_ptr/循环引用/删除器)

文章目录 4.智能指针[shared_ptr]4.1设计理念成员属性 4.2主要接口拷贝构造 4.3引用计数线程安全问题测试线程安全通过对计数引用的加锁保护使得类线程安全类实例化的对象使用时需要手动加锁保护 "锁"的引进线程引用传参问题 4.4整体代码 5.循环引用问题5.1问题的引入…

项目管理中,如何建立里程碑式管理?

项目进度控制是项目管理中的重要环节&#xff0c;也是最具挑战性的工作之一。在项目管理中&#xff0c;项目进度失控受到多种因素的影响&#xff0c;导致项目失控。 为了解决这个问题&#xff0c;我们可以借鉴在旅途中学到的经验&#xff0c;通过设立里程碑来了解项目进度&am…

MSQL系列(九) Mysql实战-Join算法底层原理

Mysql实战-Join算法底层原理 前面我们讲解了BTree的索引结构&#xff0c;及Mysql的存储引擎MyISAM和InnoDB,今天我们来详细讲解下Mysql的查询连接Join的算法原理 文章目录 Mysql实战-Join算法底层原理1.Simple Nested-Loop Join 简单嵌套循环2.Block Nested-Loop Join 块嵌套…

CDN技术(1)

1. CDN简介 CDN 是构建在数据网络上的一种分布式的内容分发网。 CDN 的作用是采用流媒体服务器集群技术&#xff0c;克服单机系统输出带宽及并发能力不足的缺点&#xff0c;可极大提升系统支持的并发流数目&#xff0c;减少或避免单点失效带来的不良影响。 2. CDN作用 CDN 利…

list列表前端分页功能已经提交list时容易犯错的问题回顾

最近在开发中&#xff0c;有返回list需要前端分页的&#xff0c;而且后续还需提交整个list&#xff0c;虽说前端分页并不难&#xff0c;但还有会有一些问题&#xff1a; 从图片代码就可以很清晰的看到前端分页&#xff0c;如何点击页数翻页的&#xff0c;很简单&#xff0c;但…

2024通信保研-电磁场电磁波复习

标量场的梯度的旋度恒等于0&#xff0c;旋度的散度等于0。 旋度&#xff1a; rot ⁡ F ( e x ∂ ∂ x e y ∂ ∂ y e z ∂ ∂ z ) ( e x F x e y F y e z F z ) e x ( ∂ F z ∂ y − ∂ F y ∂ z ) e y ( ∂ F x ∂ z − ∂ F z ∂ x ) e x ( ∂ F y ∂ x − ∂ F x …

MS COCO数据集的评价标准以及不同指标的选择推荐(AP、mAP、MS COCO、AR、@、0.5、0.75、1、目标检测、评价指标)

目标检测模型性能衡量指标、MS COCO 数据集的评价标准以及不同指标的选择推荐 0. 引言 0.1 COCO 数据集评价指标 目标检测模型通过 pycocotools 在验证集上会得到 COCO 的评价列表&#xff0c;具体参数的含义是什么呢&#xff1f; 0.2 目标检测领域常用的公开数据集 PASCAL …

网络基础知识

1.什么是链接? 链接是指两个设备之间的连接。它包括用于一个设备能够与另一个设备通信的电缆类型和协议。 2.OSI 参考模型的层次是什么? 有 7 个 OSI 层&#xff1a;物理层&#xff0c;数据链路层&#xff0c;网络层&#xff0c;传输层&#xff0c;会话层&#xff0c;表示层和…

04 文件管理

文件管理 文件和目录的创建 删除文件和目录 文件查找命令 文件的拷贝和移动 打包和压缩

Macos文件图像比较工具:Kaleidoscope for Mac

Kaleidoscope是一款文件图像比较工具&#xff0c;它可以方便地比较两个文本或者图片文件的差异。这个工具可以在Mac系统上使用&#xff0c;并且支持多种文件格式&#xff0c;包括文本文件、图片文件、PDF文件等等。 Kaleidoscope有一个直观的用户界面&#xff0c;可以让用户轻…

【蓝牙协议】简介:蓝牙芯片、蓝牙协议架构

文章目录 蓝牙芯片架构另一个视角由下到上看&#xff1a;Controller-->Host由上到下看&#xff1a;Host-->Controller 蓝牙协议架构视角HW层——蓝牙芯片层Transport——数据传输层HOST——协议层 总结 参考&#xff1a;https://zhuanlan.zhihu.com/p/585248998 参考&…

OpenCV官方教程中文版 —— 图像金字塔

OpenCV官方教程中文版 —— 图像金字塔 前言一、原理二、使用金字塔进行图像融合 前言 • 学习图像金字塔 • 使用图像创建一个新水果&#xff1a;“橘子苹果” • 将要学习的函数有&#xff1a;cv2.pyrUp()&#xff0c;cv2.pyrDown()。 一、原理 一般情况下&#xff0c;我…