竞赛 深度学习人脸表情识别算法 - opencv python 机器视觉

文章目录

  • 0 前言
  • 1 技术介绍
    • 1.1 技术概括
    • 1.2 目前表情识别实现技术
  • 2 实现效果
  • 3 深度学习表情识别实现过程
    • 3.1 网络架构
    • 3.2 数据
    • 3.3 实现流程
    • 3.4 部分实现代码
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习人脸表情识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术介绍

1.1 技术概括

面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤
(sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。

尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

在这里插入图片描述

1.2 目前表情识别实现技术

在这里插入图片描述
在这里插入图片描述

2 实现效果

废话不多说,先上实现效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3 深度学习表情识别实现过程

3.1 网络架构

在这里插入图片描述
面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)

其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

在这里插入图片描述

3.2 数据

主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

在这里插入图片描述

3.3 实现流程

在这里插入图片描述

3.4 部分实现代码

import cv2import sysimport jsonimport numpy as npfrom keras.models import model_from_jsonemotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']cascPath = sys.argv[1]faceCascade = cv2.CascadeClassifier(cascPath)noseCascade = cv2.CascadeClassifier(cascPath)# load json and create model archjson_file = open('model.json','r')loaded_model_json = json_file.read()json_file.close()model = model_from_json(loaded_model_json)# load weights into new modelmodel.load_weights('model.h5')# overlay meme facedef overlay_memeface(probs):if max(probs) > 0.8:emotion = emotions[np.argmax(probs)]return 'meme_faces/{}-{}.png'.format(emotion, emotion)else:index1, index2 = np.argsort(probs)[::-1][:2]emotion1 = emotions[index1]emotion2 = emotions[index2]return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)def predict_emotion(face_image_gray): # a single cropped faceresized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)# cv2.imwrite(str(index)+'.png', resized_img)image = resized_img.reshape(1, 1, 48, 48)list_of_list = model.predict(image, batch_size=1, verbose=1)angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]return [angry, fear, happy, sad, surprise, neutral]video_capture = cv2.VideoCapture(0)while True:# Capture frame-by-frameret, frame = video_capture.read()img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)faces = faceCascade.detectMultiScale(img_gray,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30),flags=cv2.cv.CV_HAAR_SCALE_IMAGE)# Draw a rectangle around the facesfor (x, y, w, h) in faces:face_image_gray = img_gray[y:y+h, x:x+w]filename = overlay_memeface(predict_emotion(face_image_gray))print filenamememe = cv2.imread(filename,-1)# meme = (meme/256).astype('uint8')try:meme.shape[2]except:meme = meme.reshape(meme.shape[0], meme.shape[1], 1)# print meme.dtype# print meme.shapeorig_mask = meme[:,:,3]# print orig_mask.shape# memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)orig_mask_inv = cv2.bitwise_not(orig_mask)meme = meme[:,:,0:3]origMustacheHeight, origMustacheWidth = meme.shape[:2]roi_gray = img_gray[y:y+h, x:x+w]roi_color = frame[y:y+h, x:x+w]# Detect a nose within the region bounded by each face (the ROI)nose = noseCascade.detectMultiScale(roi_gray)for (nx,ny,nw,nh) in nose:# Un-comment the next line for debug (draw box around the nose)#cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)# The mustache should be three times the width of the nosemustacheWidth =  20 * nwmustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth# Center the mustache on the bottom of the nosex1 = nx - (mustacheWidth/4)x2 = nx + nw + (mustacheWidth/4)y1 = ny + nh - (mustacheHeight/2)y2 = ny + nh + (mustacheHeight/2)# Check for clippingif x1 < 0:x1 = 0if y1 < 0:y1 = 0if x2 > w:x2 = wif y2 > h:y2 = h# Re-calculate the width and height of the mustache imagemustacheWidth = (x2 - x1)mustacheHeight = (y2 - y1)# Re-size the original image and the masks to the mustache sizes# calcualted abovemustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)# take ROI for mustache from background equal to size of mustache imageroi = roi_color[y1:y2, x1:x2]# roi_bg contains the original image only where the mustache is not# in the region that is the size of the mustache.roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)# roi_fg contains the image of the mustache only where the mustache isroi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)# join the roi_bg and roi_fgdst = cv2.add(roi_bg,roi_fg)# place the joined image, saved to dst back over the original imageroi_color[y1:y2, x1:x2] = dstbreak#     cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)#     angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)#     text1 = 'Angry: {}     Fear: {}   Happy: {}'.format(angry, fear, happy)#     text2 = '  Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)## cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# Display the resulting framecv2.imshow('Video', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# When everything is done, release the capturevideo_capture.release()cv2.destroyAllWindows()

需要完整代码以及学长训练好的模型,联系学长获取

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/118993.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用Flask快速生成报表

一、前言 《用Python快速生成报表之一》 我们介绍了用html-table快速生成表格数据报表&#xff0c;今天我们再介绍一下用Python Flask 快速开发报表&#xff0c;使用的是最古老的套页面方式。 二、Flask快速生成报表 Python有N多Web框架&#xff0c;最强大最出名的是Django&…

某全球领先的晶圆代工企业:替代FTP实现大规模文件的高效传输

全球领先的集成电路晶圆代工企业之一 该企业不仅是全球领先的集成电路晶圆代工企业之一&#xff0c;也是中国内地技术最先进、配套最完善、规模最大、跨国经营的集成电路制造企业集团。主要业务是根据客户本身或第三者的集成电路设计&#xff0c;为客户制造集成电路芯片&#…

Python Opencv实践 - 入门使用Tesseract识别图片中的文字

做车牌识别项目前试一试tesseract识别中文。tesseract的安装使用请参考&#xff1a; Python OCR工具pytesseract详解 - 知乎pytesseract是基于Python的OCR工具&#xff0c; 底层使用的是Google的Tesseract-OCR 引擎&#xff0c;支持识别图片中的文字&#xff0c;支持jpeg, png…

IBM展示非冯·诺依曼架构AI芯片NorthPole

我们正处于人工智能的“寒武纪大爆发”时期。在过去的十年中&#xff0c;人工智能已经从理论和小型测试发展到企业规模的使用案例。但是&#xff0c;用于运行人工智能系统的硬件虽然越来越强大&#xff0c;但在设计时却没有考虑到当今的人工智能。随着人工智能系统规模的扩大&a…

【24种设计模式】单例模式(Singleton Pattern)

当我们需要确保一个类只有一个实例时&#xff0c;可以使用单例模式。单例模式确保一个类只有一个实例&#xff0c;并提供一个全局访问点来获取该实例。 单例模式有多种实现方式&#xff0c;包括饿汉式、懒汉式和双重检查锁等。下面我们将分别介绍这些实现方式的特点和示例。 …

3ds Max2023安装教程(最新最详细)

目录 一.简介 二.安装步骤 软件&#xff1a;3ds Max版本&#xff1a;2023语言&#xff1a;简体中文大小&#xff1a;6.85G安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU3GHz 内存16G(或更高&#xff09;下载通道①百度网盘丨64位下载链接&#xff1a; …

Vue中的加密方式(js-base64、crypto-js、jsencrypt、bcryptjs)

目录 1.安装js-base64库 2. 在Vue组件中引入js-base64库 3.使用js-base64库进行加密 4.Vue中其他加密方式 1.crypto-js 2.jsencrypt 3.bcryptjs 1.安装js-base64库 npm install js-base64 --save-dev 2. 在Vue组件中引入js-base64库 import { Base64 } from js-ba…

Shopee买家通系统全自动化操作简单方便又快速

Shopee买家通系统是一款专门针对虾皮买家号所开发的全自动化操作系统&#xff0c;可以自动注册、自动加购加心愿单、自动下单等。 1、全自动化注册 准备好账号需要的资料后即可运行注册任务&#xff0c;程序运行时可以自动输入手机号、自动接收短信、自动输入账号密码。账号支…

用Visual Studio(VS)开发UNIX/Linux项目

目录 FTP是免不了的 正确设置头文件 组织项目结构 创建何种项目类型 FTP自动上传 大部分具有Windows开发经验的程序员会比较喜欢使用Visual Studio&#xff0c;而大部分Unix/Linux程序员则喜欢使用UltraEdit直接在主机上写代码。 为什么直接在主机上写代码呢&#xff0c;因…

FlutterUnit 周边 | 收录排序算法可视化

theme: cyanosis 1. FlutterUnit 更新&#xff1a;排序算法可视化 排序算法可视化是用视图层表现出算法执行过程中排序的过程&#xff0c;感谢 编程的平行世界 在 《十几种排序算法的可视化效果&#xff0c;快来看看&#xff01;&#x1f440;》》 一文中提供的算法支持。我进行…

单目3D目标检测[基于深度辅助篇]

基于深度辅助的方法 1. Pseudo-LiDAR Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving康奈尔大学https://zhuanlan.zhihu.com/p/52803631 首先利用DRON或PSMNET从单目 (Monocular)或双目 (Stereo)图像获取对应的…

dijkstra算法python

Dijkstra算法是一种用于寻找带权重图中从一个起始节点到其他节点的最短路径的算法。下面是一个使用Python实现Dijkstra算法的示例代码&#xff1a; import heapq def dijkstra(graph, start): # 创建一个字典来存储节点到起始节点的最短距离 distances {node: float(infinity)…

设计院图纸加密防泄密方案——天锐绿盾加密软件@德人合科技

天锐绿盾是一款专业的企业信息化防泄密软件&#xff0c;主要针对文档全生命周期进行加密保护&#xff0c;包括创建、修改、传输、归档、分发、销毁等全过程。它可以加强外发数据及终端离线的管理&#xff0c;对正常授权外带范围内的数据流程进行规范。设计图纸、文档等成果数据…

(免费领源码)java#Springboot#mysql装修选购网站99192-计算机毕业设计项目选题推荐

摘 要 随着科学技术&#xff0c;计算机迅速的发展。在如今的社会中&#xff0c;市场上涌现出越来越多的新型的产品&#xff0c;人们有了不同种类的选择拥有产品的方式&#xff0c;而电子商务就是随着人们的需求和网络的发展涌动出的产物&#xff0c;电子商务网站是建立在企业与…

顺序表的定义与实现(数据结构与算法)

一、顺序表的定义 1. 顺序表的定义 #define MaxSize 10 //定义最大长度 typedef struct{ ElemType data[MaxSize]; //用静态的“数组”存放数据元素int length; //顺序表的当前长度 …

Ubuntu设置允许root用户登录

1、激活root用户 sudo passwd root //设置root密码 su root //接着使用root登录 2、设置允许root通过ssh登录 nano /etc/ssh/sshd_config 将 PermitRootLogin 改为 yes 3、重启ssh service ssh restart 到这里就好了

SparkSQL的Shuffle分区设定及异常数据处理API(去重、缺失值处理)

一、Spark SQL的Shuffle分区数目设定 二、异常数据处理API &#xff08;1&#xff09;去重方法dropDuplicates &#xff08;2&#xff09;删除有缺失值的行方法dropna &#xff08;3&#xff09;填充缺失值数据fillna 一、Spark SQL的Shuffle分区数目设定 在允许spark程序时&a…

德语中第二虚拟式在主动态的形式,柯桥哪里可以学德语

德语中第二虚拟式在主动态的形式 1. 对于大多数的动词&#xff0c;一般使用这样的一般现在时时态&#xff1a; wrde 动词原形 例句&#xff1a;Wenn es nicht so viel kosten wrde, wrde ich mir ein Haus am Meer kaufen. 如果不花这么多钱&#xff0c;我会在海边买一栋房…

8. Cesium中的camera

1. 介绍 camera是viewer.scene中的属性&#xff0c;用来控制当前的可见域。viewer.camera 是快捷写法&#xff0c;访问的是 viewer.scene.camera&#xff0c;所以调用时这两种写法都行。介绍常用的view.carmera方法。 &#xff08;1&#xff09;. setView Camera根据视图位置…

React 在非组件环境切换路由

我的react-router-dom版本是6.16.0。之前在react中是这样配置路由的 App.jsx import ReactDOM from react-dom/client; import { HashRouter, Route, Routes } from react-router-dom;const root ReactDOM.createRoot(document.getElementById("app")); root.rend…