【网安大模型专题10.19】※论文5:ChatGPT+漏洞定位+补丁生成+补丁验证+APR方法+ChatRepair+不同修复场景+修复效果(韦恩图展示)

Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT

  • 写在最前面
  • 背景介绍
    • 自动程序修复流程Process of APR (automated program repair)
      • 1、漏洞程序
      • 2、漏洞定位模块
      • 3、补丁生成
      • 4、补丁验证
    • (可以学习的PPT设计)经典的APR方法traditional APR tools
    • learning-based APR tools
  • 方法Methodology
    • Methodology - gap差距
      • 当前的方法current method
      • 局限性
    • 方法概述overview
      • ① 建立初始 prompt,得到第一个 patch
      • ②通过 test suite 判断 patch 是否成立
      • ③ 输入已经获取的 plausible patch 及相关信息,获取更多 plausible patch
      • 最后两个步骤
  • 评估Evaluation
    • 基线Baseline
    • 基准Benchmark:
    • 研究问题Research questions
      • RQ1:ChatRepair与最先进的APR技术相比,其性能如何
        • 韦恩图(展示不同方法修复的集合)
      • RQ2: ChatRepair在不同的修复场景下是如何执行的?
      • RQ3: ChatRepair的不同组成部分对改进修复效果的贡献是什么

写在最前面

本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。

Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT

arXiv 2023.4.1
https://arxiv.org/pdf/2304.00385.pdf

Chunqiu Steven Xia, University of Illinois Urbana-Champaign
Lingming Zhang, University of Illinois Urbana-Champaign

记录一位同学的分享
PPT简约大方、重点突出,学到了一些很巧妙的小设计
同时梳理了自动程序修复APR的流程、常见方法,我之前没接触过但也有了一定的了解
分享论文循序渐进,这种阅读论文的步骤之后或许可以尝试

之后自己可以常回顾、多学习学习

背景介绍

自动程序修复流程Process of APR (automated program repair)

在这里插入图片描述

1、漏洞程序

Vulnerability Detection
(NDSS 18)Vuldeepecker: A deep learning-based system for vulnerability detection
(security 22)Mining Node.js Vulnerabilities via Object Dependence Graph and Query

2、漏洞定位模块

Fault Localization
(TSE 23) Effective Isolation of Fault-Correlated Variables via Statistical and Mutation Analysis

3、补丁生成

Patch Generation

4、补丁验证

Patch Correctness Checking
(FSE 23) A Large-scale Empirical Review of Patch Correctness Checking Approaches

(可以学习的PPT设计)经典的APR方法traditional APR tools

在这里插入图片描述

  1. 启发式搜索(GenProg)
    insight:重用项目中的代码产生正确的修复补丁
    method:通过交叉和变异操作实现已有代码的重新组合
  2. 基于历史修复
    insight:不同软件中 bug 会重复出现,可以作为后续修复的指导
    method:通过历史信息指导启发式搜索
  3. 利用相似代码
    insight:与缺陷代码相似的代码可能存在同样的错误
    method:通过相似信息指导启发式搜索
  4. 基于修复模版
    insight:特定漏洞修复是可以总结的一些模式
    method:专家总结定义修复模版,直接进行应用
  5. 基于语义约束
    insight:修复 bug 就是改变程序使得满足 test case 的约束
    method:搜索约束并转换为约束求解问题

learning-based APR tools

  1. 补丁排序模型
    method:通过提取补丁特征给补丁排序
  2. 补丁模版获取
    method:聚类收集最常见的修复方式(模板)
  3. 端到端补丁生成模型(模型选择与训练数据的差别)
  • NMT-based
  • LLM-based

方法Methodology

Methodology - gap差距

当前的方法current method

有bug的代码被移除,LLM直接预测正确的代码
buggy code is removed and a LLM directly predicts correct code

给定前缀和后缀上下文
given the prefix and suffix context

局限性

现有基于llm的APR工具的局限性:
limitation of existing LLM-based APR tools:

1.丢失测试失败信息
missing test failure information

2.重复抽样
repeated sampling

3.对合理补丁的无知
ignorance of plausible patches

在这里插入图片描述

可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

方法概述overview

这页PPT:将总览图黑色虚线框出
在这里插入图片描述
建立初始 prompt,得到第一个 patch

通过 test suite 判断 patch 是否成立

  1. 如果成立进入下一阶段
  2. 如果不成立持续询问 Chatgpt 直到获取一个 plausible patch

输入已经获取的 plausible patch 及相关信息,获取更多 plausible patch
在这里插入图片描述
可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

① 建立初始 prompt,得到第一个 patch

初始输入initial input(通过红色虚线方框突出重点)
在这里插入图片描述

1、初始提示符:您是一个自动程序修复工具
初始 prompt:You are an Automated Program Repair Tool
在这里插入图片描述

2、在同一个bug项目中包含一些历史bug修复的例子
include a few examples of historical bug fixes within the same buggy project
在这里插入图片描述

少样本通过这样做,我们将模型调整到修复任务并允许它
few-shot examples By doing so, we gear the model towards the repair task and allow it

学习任务的所需输出格式(即补丁)。
to learn the desired output format (i.e. a patch) of the task.

3、用填充的位置指示器替换函数中有错误的代码完全≪≫
replace the buggy code within the function with an infill location indicator (≫ [ INFILL ] ≪)

在这里插入图片描述

4、提供原始的bug行
provide the original buggy line
在这里插入图片描述

5、失败的测试1)它的名称,2)触发测试失败的相关代码行,以及3)产生的错误信息
failing test(s) 1) its name, 2) the relevant code line(s) triggering the test failure, and 3) the error message produced

在这里插入图片描述
在这里插入图片描述

②通过 test suite 判断 patch 是否成立

  1. 如果成立进入下一阶段
  2. 如果不成立持续询问 Chatgpt 直到获取一个 plausible patch

可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

在这里插入图片描述

③ 输入已经获取的 plausible patch 及相关信息,获取更多 plausible patch

可信的补丁:通过测试套件的补丁
plausible patches: patches that pass the test suite

在这里插入图片描述

最后两个步骤

在这里插入图片描述

评估Evaluation

基线Baseline

1、8个最近的基于学习和llm的APR基线
8 recent learning-based and LLM-based APR baselines

2、12个精选的传统方法
12 selected traditional techniques

3、BaseChatGPT
BaseChatGPT

基准Benchmark:

4j和QuixBugs的缺陷
Defects4j and QuixBugs

研究问题Research questions

1、RQ1:ChatRepair与最先进的APR技术相比,其性能如何?
• RQ1: How does the performance of ChatRepair compare against the state-of-the-art techniques for APR?

2、RQ2: ChatRepair在不同的修复场景下是如何执行的?
• RQ2: How does ChatRepair perform when used in different repair scenarios?

3、RQ3: ChatRepair的不同组成部分对改进修复效果的贡献是什么
• RQ3: What are the contributions of different components of ChatRepair in improving repair effectiveness?

RQ1:ChatRepair与最先进的APR技术相比,其性能如何

在这里插入图片描述

1.ChatRepair可以比仅使用ChatGPT模型的基线,分别在Defects4j 1.2和2.0上,提高修复了34和23个bug
ChatRepair can improve over the baseline of just using the ChatGPT model with 34 and 23 more bug fixes on Defects4j 1.2 and 2.0 respectively.

2.比目前最先进的APR工具多15和17个。
with 15 and 17 more than the current state-of-the-art APR tool.
在这里插入图片描述

ChatRepair能够正确地修复quixbugs中的所有bug——java和python数据集,击败所有性能最好的技术
ChatRepair is able to correctly fix all bugs within the QuixBugs-Java and-Python datasets, beating out all top-performing techniques.

韦恩图(展示不同方法修复的集合)

存在有些方法识别的漏洞,这篇文章不能识别
在这里插入图片描述
在这里插入图片描述

RQ2: ChatRepair在不同的修复场景下是如何执行的?

基线:BaseChatGPT / CodexRepair
baseline: BaseChatGPT / CodexRepair

在这里插入图片描述

BaseChatGPT没有产生令人印象深刻的改进
BaseChatGPT not yield impressive improvements

RQ3: ChatRepair的不同组成部分对改进修复效果的贡献是什么

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/118039.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s---深入解析pod

pod 1.为何使用pod?2.容器设计模式3. pod基本概念3.1 pod仍需关注的字段3.2 pod的生命周期 4.深入解析pod(四种Projected Volume,“投射数据卷)4.1 Secret4.2 ConfigMap4.3 Downward API4.4 ServiceAccountToken(特殊secret)4.5 pod 的健康检…

回归预测 | MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入单输出回归预测

回归预测 | MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入单输出回归预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 MATLAB实现BO-LSTM贝叶斯优化长短期神经网络多输入…

SOLIDWORKS 2024新功能 3D CAD三维机械设计10大新功能

SOLIDWORKS 2024新增功能 - 3D CAD三维机械设计 10大新增功能 1. 先前版本的兼容性 •利用您订阅的 SOLIDWORKS,可将您的 SOLIDWORKS 设计作品保存为旧版本,与使用旧版本 SOLIDWORKS 的供应商无缝协作。 •可将零件、装配体和工程图保存为最新版本…

c++中 多线程执行时 线程的执行顺序不固定

C中多线程执行时,线程的执行顺序是不确定的。这是由于多线程的并发性质导致的。 在多线程程序中,多个线程可以同时执行,并且它们的执行顺序是由系统调度器决定的。系统调度器根据各种因素(如线程的优先级、线程的状态等&#xff0…

ElasticSearch中关于Nasted嵌套查询的介绍:生动案例,通俗易懂,彻底吸收

题注:随着对ES接触的越来越深入,发现此前了解的ES知识点有点单薄,特此寻来ES知识点汇总成的一个思维导图,全面了解自己掌握了哪些,未掌握哪些。此外,作者斌并没有足够的精力学习ES全部的知识点,…

运行报错(三)git bash报错fatal: detected dubious ownership in repository at

报错现象 在运行git 命令时,出现报错 “fatal: detected dubious ownership in repository at” 报错原因 文件夹的所有者和现在的用户不一致 栗子: 文件夹的所有者是root,而当前用户是admin 解决方案 方法一、 将文件夹的所有者替换成ad…

网络原理之UDP协议

文章目录 前言应用层协议常见的几种数据格式1. xml2. JSON3. protobuffer 端口号传输层UDP 报文协议格式源端口号和目的端口号UDP 长度校验和 前言 前面我们学习了如何使用 UDP 数据报 和 TCP 流实现网络编程一个回显服务器,在知道了 UDP 和 TCP 协议的基本原理之后…

Unity性能优化一本通

文章目录 关于Unity性能优化一、资源部分:1、图片1.1、 图片尺寸越小越好1.2、使用2N次幂大小1.3、取消勾选Read/Write Enabled1.4、图片压缩1.5、禁用多余的Mip Map1.6、合并图集 2、模型2.1.限制模型面数2.2.限制贴图的大小2.3.禁用Read/Write Enables2.4.不勾选其…

行情分析——加密货币市场大盘走势(10.25)

目前大饼继续上涨,还没有看到震荡盘整的迹象。从MACD日线来看,连续绿色实心柱已经10天。现在有点上涨无力了,而现在入场做空性价比更高,看反弹到33000-32000。如果谨慎点,可以继续等待。 以太目前来看和大饼一样那个也…

Rabbitmq消息积压问题如何解决?

一、增加处理能力 优化系统架构、增加服务器资源、采用负载均衡等手段,以提高系统的处理能力和并发处理能力。通过增加服务器数量或者优化代码,确保系统能够及时处理所有的消息。 二、异步处理 将消息的处理过程设计为异步执行,即接收到消息…

Pandas 数据分析系列1--SeriesDataFrame数据结构详解

Pandas 概述 Pandas 是一个开源的数据分析和数据处理库,是基于 NumPy 开发的。它提供了灵活且高效的数据结构,使得处理和分析结构化、缺失和时间序列数据变得更加容易。其在数据分析和数据处理领域广泛应用,在金融、社交媒体、科学研究等领域都有很高的使用率和广泛的应用场…

深度学习使用Keras进行迁移学习提升网络性能

上一篇文章我们用自己定义的模型来解决了二分类问题,在20个回合的训练之后得到了大约74%的准确率,一方面是我们的epoch太小的原因,另外一方面也是由于模型太简单,结构简单,故而不能做太复杂的事情,那么怎么提升预测的准确率了?一个有效的方法就是迁移学习。 迁移学习其…

LeetCode88——合并两个有序数组

LeetCode88——合并两个有序数组 1.题目描述: 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减…

SQL预编译中order by后为什么不能参数化原因

SQL预编译中order by后为什么不能参数化原因 以Golang为例进行说明 package mainimport ("database/sql""fmt""log"_ "github.com/go-sql-driver/mysql" // Import MySQL driver )func main() {// 数据库连接信息db, err : sql.Open…

关于c语言,你必须了解的运行流程

流程图 1.程序的翻译环境和执行环境 在ANSIC任何一种实现下,都存在两种环境,程序的翻译环境和执行环境 翻译环境:将源代码转换成机器指令 执行环境:用于执行代码 2.详解编译链接 简单的说一个代码从编写到看到控制台的结果分为编译链接两步即可,接下来我们将详细解释编译链接中…

Android 判断当前线程是否是主线程的方法

方法一: public boolean isMainThread() {return Looper.getMainLooper().getThread() Thread.currentThread(); }方法二: public boolean isMainThread() { Looper looper Looper.myLooper(); if (looper null) {return false;}return looper Loop…

FoLR:Focus on Local Regions for Query-based Object Detection论文学习笔记

论文地址:https://arxiv.org/abs/2310.06470 自从DETR问询式检测器首次亮相以来,基于查询的方法在目标检测中引起了广泛关注。然而,这些方法面临着收敛速度慢和性能亚优等挑战。值得注意的是,在目标检测中,自注意力机制…

Java8实战-总结44

Java8实战-总结44 CompletableFuture:组合式异步编程Future 接口Future 接口的局限性使用 CompletableFuture 构建异步应用 CompletableFuture:组合式异步编程 最近这些年,两种趋势不断地推动我们反思我们设计软件的方式。第一种趋势和应用运…

js遍历数组和对象的常用方法

遍历数组的常用方法 for循环遍历&#xff1a;使用最广泛的方法&#xff0c;通过下标访问每一个数组元素。 const arr [1, 2, 3, 4, 5]; for(let i0; i<arr.length; i) {console.log(arr[i]); }forEach遍历&#xff1a;数组的forEach()方法可以遍历每个元素&#xff0c;对每…

微信小程序设计之主体文件app-wxss/less

一、新建一个项目 首先&#xff0c;下载微信小程序开发工具&#xff0c;具体下载方式可以参考文章《微信小程序开发者工具下载》。 然后&#xff0c;注册小程序账号&#xff0c;具体注册方法&#xff0c;可以参考文章《微信小程序个人账号申请和配置详细教程》。 在得到了测…