YOLOv5 添加 OTA,并使用 coco、CrowdHuman数据集进行训练。

YOLO-OTA

  • 第一步:拉取 YOLOv5 的代码
  • 第二步:添加 ComputeLossOTA 函数
  • 第二步:修改 train 和 val 中损失函数为 ComputeLossOTA 函数
    • 1、在 train.py 中 首先添加 ComputeLossOTA 库。
    • 2、在 train.py 修改初始化的损失函数
    • 3、在 train.py 修改一些必要的参数
    • 4、修改一下 parser 参数,方便控制是否使用 OTALOSS
    • 5、在 val.py 中修改一些必要的参数
  • 开始训练
    • 训练 coco128 数据集
    • 训练 coco 数据集
    • 训练 CrowdHuman 数据集

第一步:拉取 YOLOv5 的代码

git clone https://github.com/ultralytics/yolov5.git 

第二步:添加 ComputeLossOTA 函数

打开 utils/loss.py 文件,向其中添加下面的部分:

import torch.nn.functional as F
from utils.metrics import box_iou
from utils.torch_utils import de_parallel
from utils.general import xywh2xyxyclass ComputeLossOTA:# Compute lossesdef __init__(self, model, autobalance=False):super(ComputeLossOTA, self).__init__()device = next(model.parameters()).device  # get model deviceh = model.hyp  # hyperparameters# Define criteriaBCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets# Focal lossg = h['fl_gamma']  # focal loss gammaif g > 0:BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)det = de_parallel(model).model[-1]  # Detect() moduleself.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02])  # P3-P7self.ssi = list(det.stride).index(16) if autobalance else 0  # stride 16 indexself.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalancefor k in 'na', 'nc', 'nl', 'anchors', 'stride':setattr(self, k, getattr(det, k))def __call__(self, p, targets, imgs):  # predictions, targets, model   device = targets.devicelcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p] # Lossesfor i, pi in enumerate(p):  # layer index, layer predictionsb, a, gj, gi = bs[i], as_[i], gjs[i], gis[i]  # image, anchor, gridy, gridxtobj = torch.zeros_like(pi[..., 0], device=device)  # target objn = b.shape[0]  # number of targetsif n:ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets# Regressiongrid = torch.stack([gi, gj], dim=1)pxy = ps[:, :2].sigmoid() * 2. - 0.5#pxy = ps[:, :2].sigmoid() * 3. - 1.pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]pbox = torch.cat((pxy, pwh), 1)  # predicted boxselected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]selected_tbox[:, :2] -= gridiou = bbox_iou(pbox, selected_tbox, CIoU=True)  # iou(prediction, target)if type(iou) is tuple:lbox += (iou[1].detach() * (1 - iou[0])).mean()iou = iou[0]else:lbox += (1.0 - iou).mean()  # iou loss# Objectnesstobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype)  # iou ratio# Classificationselected_tcls = targets[i][:, 1].long()if self.nc > 1:  # cls loss (only if multiple classes)t = torch.full_like(ps[:, 5:], self.cn, device=device)  # targetst[range(n), selected_tcls] = self.cplcls += self.BCEcls(ps[:, 5:], t)  # BCE# Append targets to text file# with open('targets.txt', 'a') as file:#     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]obji = self.BCEobj(pi[..., 4], tobj)lobj += obji * self.balance[i]  # obj lossif self.autobalance:self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()if self.autobalance:self.balance = [x / self.balance[self.ssi] for x in self.balance]lbox *= self.hyp['box']lobj *= self.hyp['obj']lcls *= self.hyp['cls']bs = tobj.shape[0]  # batch sizeloss = lbox + lobj + lclsreturn loss * bs, torch.cat((lbox, lobj, lcls)).detach()def build_targets(self, p, targets, imgs):indices, anch = self.find_3_positive(p, targets)device = torch.device(targets.device)matching_bs = [[] for pp in p]matching_as = [[] for pp in p]matching_gjs = [[] for pp in p]matching_gis = [[] for pp in p]matching_targets = [[] for pp in p]matching_anchs = [[] for pp in p]nl = len(p)    for batch_idx in range(p[0].shape[0]):b_idx = targets[:, 0]==batch_idxthis_target = targets[b_idx]if this_target.shape[0] == 0:continuetxywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]txyxy = xywh2xyxy(txywh)pxyxys = []p_cls = []p_obj = []from_which_layer = []all_b = []all_a = []all_gj = []all_gi = []all_anch = []for i, pi in enumerate(p):b, a, gj, gi = indices[i]idx = (b == batch_idx)b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]                all_b.append(b)all_a.append(a)all_gj.append(gj)all_gi.append(gi)all_anch.append(anch[i][idx])from_which_layer.append((torch.ones(size=(len(b),)) * i).to(device))fg_pred = pi[b, a, gj, gi]                p_obj.append(fg_pred[:, 4:5])p_cls.append(fg_pred[:, 5:])grid = torch.stack([gi, gj], dim=1)pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.pxywh = torch.cat([pxy, pwh], dim=-1)pxyxy = xywh2xyxy(pxywh)pxyxys.append(pxyxy)pxyxys = torch.cat(pxyxys, dim=0)if pxyxys.shape[0] == 0:continuep_obj = torch.cat(p_obj, dim=0)p_cls = torch.cat(p_cls, dim=0)from_which_layer = torch.cat(from_which_layer, dim=0)all_b = torch.cat(all_b, dim=0)all_a = torch.cat(all_a, dim=0)all_gj = torch.cat(all_gj, dim=0)all_gi = torch.cat(all_gi, dim=0)all_anch = torch.cat(all_anch, dim=0)pair_wise_iou = box_iou(txyxy, pxyxys)pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)gt_cls_per_image = (F.one_hot(this_target[:, 1].to(torch.int64), self.nc).float().unsqueeze(1).repeat(1, pxyxys.shape[0], 1))num_gt = this_target.shape[0]cls_preds_ = (p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_())y = cls_preds_.sqrt_()pair_wise_cls_loss = F.binary_cross_entropy_with_logits(torch.log(y/(1-y)) , gt_cls_per_image, reduction="none").sum(-1)del cls_preds_cost = (pair_wise_cls_loss+ 3.0 * pair_wise_iou_loss)matching_matrix = torch.zeros_like(cost, device=device)for gt_idx in range(num_gt):_, pos_idx = torch.topk(cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)matching_matrix[gt_idx][pos_idx] = 1.0del top_k, dynamic_ksanchor_matching_gt = matching_matrix.sum(0)if (anchor_matching_gt > 1).sum() > 0:_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)matching_matrix[:, anchor_matching_gt > 1] *= 0.0matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0fg_mask_inboxes = (matching_matrix.sum(0) > 0.0).to(device)matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)from_which_layer = from_which_layer[fg_mask_inboxes]all_b = all_b[fg_mask_inboxes]all_a = all_a[fg_mask_inboxes]all_gj = all_gj[fg_mask_inboxes]all_gi = all_gi[fg_mask_inboxes]all_anch = all_anch[fg_mask_inboxes]this_target = this_target[matched_gt_inds]for i in range(nl):layer_idx = from_which_layer == imatching_bs[i].append(all_b[layer_idx])matching_as[i].append(all_a[layer_idx])matching_gjs[i].append(all_gj[layer_idx])matching_gis[i].append(all_gi[layer_idx])matching_targets[i].append(this_target[layer_idx])matching_anchs[i].append(all_anch[layer_idx])for i in range(nl):if matching_targets[i] != []:matching_bs[i] = torch.cat(matching_bs[i], dim=0)matching_as[i] = torch.cat(matching_as[i], dim=0)matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)matching_gis[i] = torch.cat(matching_gis[i], dim=0)matching_targets[i] = torch.cat(matching_targets[i], dim=0)matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)else:matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs           def find_3_positive(self, p, targets):# Build targets for compute_loss(), input targets(image,class,x,y,w,h)na, nt = self.na, targets.shape[0]  # number of anchors, targetsindices, anch = [], []gain = torch.ones(7, device=targets.device).long()  # normalized to gridspace gainai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indicesg = 0.5  # biasoff = torch.tensor([[0, 0],[1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m# [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm], device=targets.device).float() * g  # offsetsfor i in range(self.nl):anchors = self.anchors[i]gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain# Match targets to anchorst = targets * gainif nt:# Matchesr = t[:, :, 4:6] / anchors[:, None]  # wh ratioj = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t']  # compare# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))t = t[j]  # filter# Offsetsgxy = t[:, 2:4]  # grid xygxi = gain[[2, 3]] - gxy  # inversej, k = ((gxy % 1. < g) & (gxy > 1.)).Tl, m = ((gxi % 1. < g) & (gxi > 1.)).Tj = torch.stack((torch.ones_like(j), j, k, l, m))t = t.repeat((5, 1, 1))[j]offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]else:t = targets[0]offsets = 0# Defineb, c = t[:, :2].long().T  # image, classgxy = t[:, 2:4]  # grid xygwh = t[:, 4:6]  # grid whgij = (gxy - offsets).long()gi, gj = gij.T  # grid xy indices# Appenda = t[:, 6].long()  # anchor indicesindices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indicesanch.append(anchors[a])  # anchorsreturn indices, anch

第二步:修改 train 和 val 中损失函数为 ComputeLossOTA 函数

1、在 train.py 中 首先添加 ComputeLossOTA 库。

# 63 行
from utils.loss import ComputeLoss, ComputeLossOTA

2、在 train.py 修改初始化的损失函数

# 263 行
if opt.losstype == "normloss":compute_loss = ComputeLoss(model)  # init loss class
elif opt.losstype == "otaloss":compute_loss = ComputeLossOTA(model)  # init loss class

3、在 train.py 修改一些必要的参数

因为 OTA 需要图片为收入,所以 ComputeLossOTA 和 ComputeLoss 相比,需要添加 imgs 为输入。

# 319 行
if opt.losstype == "normloss":loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size                    
elif opt.losstype == "otaloss":loss, loss_items = compute_loss(pred, targets.to(device), imgs)  # loss scaled by batch_size

4、修改一下 parser 参数,方便控制是否使用 OTALOSS

parser.add_argument('--losstype', type=str, default="normloss", help='choose loss type: loss otaloss')

5、在 val.py 中修改一些必要的参数

# 212 行
# Loss
if compute_loss:# loss += compute_loss(train_out, targets)[1]  # box, obj, clsloss += compute_loss(train_out, targets, im)[1]  # box, obj, cls

开始训练

下载的话权重,去官网下载你需要的模型的权重。 如:yolov5s.pt

训练 coco128 数据集

Usage - Single-GPU training:$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended) $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch
# 使用 OTA $ python train.py --data coco128.yaml --weights yolov5s.pt -losstype otaloss  # from pretrained (recommended) -losstype otaloss$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml -losstype otaloss  # from scratchUsage - Multi-GPU DDP training:$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3

训练图片一个batch_size 如下:

在这里插入图片描述

训练 coco 数据集

使用 coco 进行训练的命令如下:

Usage - Single-GPU training:$ python train.py --data coco.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)$ python train.py --data coco.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratchUsage - Multi-GPU DDP training:$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3

没有下载 coco 的话,这个命令会自动下载。最好在coco数据集里面自己新建一个 coco.ymal,内容可填写如下:

# COCO 2017 dataset http://cocodataset.org# download command/URL (optional)
# download: bash ./scripts/get_coco.sh# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: /home/adr/Desktop/Code/Python/2D/datasets/coco/train2017.txt  # 118287 images
val: /home/adr/Desktop/Code/Python/2D/datasets/coco/val2017.txt  # 5000 images
test: /home/adr/Desktop/Code/Python/2D/datasets/coco/test-dev2017.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794# number of classes
nc: 80# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone','microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear','hair drier', 'toothbrush' ]

这样使用其他 yolo 版本训练的时候,只需要把这个 coco.yaml 的文件的绝对路径给它也行。

python train.py --data /home/adr/Desktop/Code/Python/2D/datasets/coco.yaml --weights '' --cfg yolov5s.yaml

训练图片一个batch_size 如下:
在这里插入图片描述

训练 CrowdHuman 数据集

1、下载 官网数据集下载

CrowdHuman dataset下载链接:https://www.crowdhuman.org/download.html
把里面链接都进行下载。然后按照步骤二给出的连接即可。

2、转化为 coco 数据集格式

可以根据下面仓库的步骤进行 : https://github.com/Shaohu-Li/YOLOv5-Tools

3、使用下面命令进行训练。

# 不使用预训练权重
python train.py --data /home/adr/datasets/CrowdHuman/crowdhuman.yaml --cfg yolov5s.yaml --img 640 --batch-size 32 --weights ''# 使用预训练权重
python train.py --data /home/adr/datasets/CrowdHuman/crowdhuman.yaml --cfg yolov5s.yaml --img 640 --batch-size 32 --weights yolov5s.pt

训练图片一个batch_size 如下:
在这里插入图片描述

本文参考 大神链接
B 站: https://space.bilibili.com/286900343

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/117550.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【2024秋招】2023-10-9 同花顺后端笔试题

1 Hashmap mp new hashmap&#xff08;50&#xff09;的大小扩充了几次 初时应该就给了这么多空间&#xff0c;在不考虑添加元素&#xff0c;所以扩容为0次 2 算数表达式的中缀为ab*c-d/e&#xff0c;后缀为abc*de/-&#xff0c;前缀是&#xff1f; 3 50M电信带宽&#xff…

【Java】泛型通配符

类型通配符 类型通配符<?> 一般用于接受使用&#xff0c;不能够做添加List<?>&#xff1a;表示元素类型未知的list&#xff0c;它的元素可以匹配任何类型带通配符的List仅表示它是各种泛型List的父类&#xff0c;并不能把元素添加到其中类型通配符上限&#xff1…

黑豹程序员-架构师学习路线图-百科:API接口测试工具Postman

文章目录 1、为什么要使用Postman&#xff1f;2、什么是Postman&#xff1f; 1、为什么要使用Postman&#xff1f; 目前我们开发项目大都是前后端分离项目&#xff0c;前端采用h5cssjsvue基于nodejs&#xff0c;后端采用java、SpringBoot、SSM&#xff0c;大型项目采用SpringC…

【C语言】实现通讯录管理系统

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家实现通讯录&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 目录 一. 前言二. 通讯录的实现2.1 写出基本框架2.2 制作menu菜单2.3 创建联系人和通讯录结构体2.4 …

LSM Tree 深度解析

我们将深入探讨日志结构合并树&#xff0c;也称为LSM Tree&#xff1a;这是许多高度可扩展的NoSQL分布式键值型数据库的基础数据结构&#xff0c;例如Amazon的DynamoDB、Cassandra和ScyllaDB。这些数据库的设计被认为支持比传统关系数据库更高的写入速率。我们将看到LSM Tree如…

驱动开发4 使用字符设备驱动的分步实现编写LED驱动(LED亮灯)

一、思维导图 二、通过字符设备驱动的分步实现编写LED驱动&#xff0c;另外实现特备文件和设备的绑定 应用程序 test.c #include<stdlib.h> #include<stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/ioctl.h> #include…

【python】接入MySQL实际操作案例

Python程序接入MySQL数据库 文章目录 Python程序接入MySQL数据库建库建表接入MySQL代码实操插入数据删除数据更新数据查询数据 案例讲解 在 Python3 中&#xff0c;我们可以使用 mysqlclient或者 pymysql三方库来接入 MySQL 数据库并实现数据持久化操作。二者的用法完全相同&…

Jenkins部署失败:JDK ‘jdk1.8.0_381‘ not supported to run Maven projects

Jenkins部署报错&#xff1a;JDK ‘jdk1.8.0_381’ not supported to run Maven projects提示使用的jdk有问题&#xff0c;启动的jdk版本不能满足项目启动。 登录Jenkins管理页面&#xff0c;系统管理——全局工具配置——JDK安装配置满足条件的JDK版本&#xff0c;保存配置&…

Parallels Client for Mac:改变您远程控制体验的革命性软件

在当今数字化的世界中&#xff0c;远程控制软件已经成为我们日常生活和工作中不可或缺的一部分。在众多远程控制软件中&#xff0c;Parallels Client for Mac以其独特的功能和出色的性能脱颖而出&#xff0c;让远程控制变得更加简单、高效和灵活。 Parallels Client for Mac是…

实现el-table打印功能,样式对齐,去除滚动条

实现el-table打印功能,样式对齐&#xff0c;去除滚动条 // 整个页面打印 function printTable(id) {// let domId #js_index// if (id) {// domId #${ id };// }// let wpt document.querySelector(domId);// let newContent wpt.innerHTML;// let oldContent document.…

08数据结构——排序

8.2 插入排序 8.2.1 直接插入排序 直接插入排序&#xff08;用哨兵&#xff09;代码如下&#xff1a; void InsertSort(ElemType A[],int n){int i,j;for(i2;i<n;i) //依次将A[2]~A[n]插入前面已排序序列if(A[i]<A[i-1]){ //若A[i]关键码小于其前驱…

成都瀚网科技有限公司抖音小店:创新营销引领电商潮流

在当今数字化时代&#xff0c;抖音作为一款备受欢迎的短视频平台&#xff0c;不仅吸引了大量用户的关注&#xff0c;还为众多电商企业提供了新的销售渠道。成都瀚网科技有限公司抖音小店便是其中之一&#xff0c;凭借其独特的营销策略和优质的产品&#xff0c;成为了抖音电商领…

PyCharm改变代码背景图片的使用教程

一个好的集成环境是学习和使用一门编程语言的重中之重&#xff0c;这次我给大家分享如何改变PyCharm软件的代码背景图片。 说明&#xff1a;本教程使用的是汉化版PyCharm软件。 打开PyCharm软件。 点击软件最上方导航栏的文件&#xff0c;然后找到设置。 打开设置然后点击外观…

Baumer工业相机堡盟工业相机如何使用BGAPISDK生成视频(C++)

Baumer工业相机 Baumer工业相机堡盟相机是一种高性能、高质量的工业相机&#xff0c;可用于各种应用场景&#xff0c;如物体检测、计数和识别、运动分析和图像处理 Baumer的万兆网相机拥有出色的图像处理性能&#xff0c;可以实时传输高分辨率图像。此外&#xff0c;该相机还…

总结使用React做过的一些优化

一、修改css模拟v-show {!flag && <MyComponent style{{display: none}} />} {flag && <MyComponent />}<MyComponent style{{ display: flag ? block : none }} />二、循环使用key const todosList todos.map(item > {<li key{it…

Web APIs——焦点事件以及小米搜索框

一、事件类型 二、焦点事件 <body><input type"text"><script>const input document.querySelector(input)input.addEventListener(focus,function(){console.log(有焦点触发)})input.addEventListener(blur,function(){console.log(失去焦点触…

JS数组扁平化多维数组变为一维数组的三种方法

在实践中&#xff0c;我们有一个多维数组&#xff0c;我想把它变为一维数组&#xff0c;我们该怎么办呢&#xff1f; 让我为大家介绍一下吧&#xff01; 1.flat方法 我们使用flat可以实现降维 // 声明一个数组const arr [1,2,3,[4,5,6]]// 我们使用flat方法console.log(arr.…

hbase和aerospike基础概念及所对应的python包API使用

Hbase Hbase shell常用操作 1.创建表 create table name,column familytable name&#xff1a;表名 column family:列族名 2.查看所有表名称 list3.插入操作 put table name,row1,column family:column name,valuerow1:行键(即Row Key) column family:column name&#xf…

如何使用 JMeter 进行 HTTPS 请求测试?

本文将介绍如何使用 JMeter 测试 HTTPS 请求&#xff0c;并提供相关的技巧和注意事项。 在进行性能测试时&#xff0c;很多网站都采用了 HTTPS 协议。当我们测试 HTTPS 请求&#xff0c;如果服务端开启了双向认证&#xff0c;则需要客户端发送请求时带上证书。本文介绍如何在 …

【Axure视频教程】曲线图

今天教大家在Axure制作可视化曲线图的原型模板&#xff0c;鼠标移入曲线图后&#xff0c;会显示弹窗并回显对应折点的具体数据&#xff0c;该模板是用Axure原生元件制作的&#xff0c;所以使用方便&#xff0c;可以任意修改对应样式或者交互效果。该原型模板的具体效果可以参考…