“深入探讨Java JUC中的ReentrantLock锁:实现多线程同步与并发控制“

简介

1、从Java5开始,Java提供了一种功能更强大的线程同步机制——通过显式定义同步锁对象来实现同步,在这种机制下,同步锁由Lock对象充当。

2、Lock 提供了比synchronized方法和synchronized代码块更广泛的锁定操作,Lock允许实现更灵活的结构,可以具有差别很大的属性,并且支持多个相关的Condition对象。

3、Lock是控制多个线程对共享资源进行访问的工具。通常,锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象。

4、某些锁可能允许对共享资源并发访问,如ReadWriteLock(读写锁),Lock、ReadWriteLock是Java5提供的两个根接口,并为Lock 提供了ReentrantLock(可重入锁)实现类,为ReadWriteLock提供了ReentrantReadWriteLock 实现类。

5、Java8新增了新型的StampedLock类,在大多数场景中它可以替代传统的ReentrantReadWriteLock。ReentrantReadWriteLock 为读写操作提供了三种锁模式:Writing、ReadingOptimistic、Reading。
在这里插入图片描述

ReentrantLock

什么是ReentrantLock

ReentrantLock 是 Java 中的一种锁实现,它提供了与传统的 synchronized 关键字相似的功能,但具有更多的灵活性和控制能力。

ReentrantLock特性

可重入性: 与 synchronized 一样,ReentrantLock 具有可重入性,这意味着线程可以多次获取同一个锁而不会出现死锁。

锁的公平性: ReentrantLock 支持公平锁和非公平锁。在公平锁模式下,锁将按照线程请求的顺序分配。在非公平锁模式下,锁将在可用时立即分配给等待线程。

Condition 对象: ReentrantLock 提供了 Condition 对象,它允许线程在特定条件下等待和通知其他线程。这对于线程间的协作非常有用。

中断响应: ReentrantLock 支持中断响应,这意味着线程可以在等待锁的过程中响应中断信号。

超时锁定: ReentrantLock 允许您尝试获取锁,并设置一个超时时间。如果在超时时间内无法获取锁,线程可以执行其他操作。

lock 锁和synchronized 对比

可重入性:
ReentrantLock 具有可重入性,允许同一线程多次获取同一个锁而不会引发死锁。
synchronized 也是可重入的,同一线程可以多次获得同一个锁。
灵活性:
ReentrantLock 提供了更多的灵活性和控制,允许你选择公平性和非公平性、设置超时、使用读写锁等高级功能。
synchronized 相对较简单,提供的功能较少,不支持超时、读写锁等高级功能。
条件等待:
ReentrantLock 提供了 Condition 对象,允许线程在特定条件下等待,然后在条件满足时重新获取锁。
synchronized 缺少这种直接的条件等待机制,但可以使用 wait() 和 notify() 方法实现类似的功能。
公平性:
ReentrantLock 允许你选择锁的公平性,以公平或非公平方式分配锁。在公平模式下,锁将按照等待顺序分配给等待的线程。
synchronized 使用的是非公平锁,不保证按等待顺序分配。
性能:
synchronized 在某些情况下可能比 ReentrantLock 更高效,因为它是 JVM 内置的一种机制。
ReentrantLock 在高竞争情况下可以提供更好的性能,但它的创建和维护成本通常更高。
异常处理:
ReentrantLock 具有灵活的异常处理机制,可以捕获并处理锁操作中的异常。
synchronized 的异常处理相对较简单,一旦发生异常,锁将自动释放。
可中断性:
ReentrantLock 允许线程响应中断,可以在等待锁时中断线程。
synchronized 不支持线程中断。
锁的可绑定性:
ReentrantLock 允许将锁绑定到多个条件。
synchronized 不提供类似的绑定条件的机制。

使用案例

在这个示例中,我们创建了一个ReentrantLock实例,并使用它来保护SharedResource对象中的doWork方法。两个线程(“Thread 1"和"Thread 2”)共享SharedResource对象,并分别调用doWork方法。lock.lock()获取锁,lock.unlock()释放锁,确保在同一时刻只有一个线程可以进入doWork方法的同步块。这确保了线程之间的安全性和同步执行。

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;public class LockExample {public static void main(String[] args) {// 创建一个ReentrantLock实例Lock lock = new ReentrantLock();// 创建一个共享资源SharedResource resource = new SharedResource(lock);// 创建多个线程并启动Thread thread1 = new Thread(new Worker(resource), "Thread 1");Thread thread2 = new Thread(new Worker(resource), "Thread 2");thread1.start();thread2.start();}
}class SharedResource {private Lock lock;public SharedResource(Lock lock) {this.lock = lock;}public void doWork() {lock.lock(); // 获取锁try {// 同步的代码块for (int i = 1; i <= 5; i++) {System.out.println(Thread.currentThread().getName() + " is working: " + i);}} finally {lock.unlock(); // 释放锁}}
}class Worker implements Runnable {private SharedResource resource;public Worker(SharedResource resource) {this.resource = resource;}@Overridepublic void run() {resource.doWork();}
}

AQS回顾

AQS即AbstractQueuedSynchronizer的缩写,这个是个内部实现了两个队列的抽象类,分别是同步队列和条件队列。其中同步队列是一个双向链表,里面储存的是处于等待状态的线程,正在排队等待唤醒去获取锁,而条件队列是一个单向链表,里面储存的也是处于等待状态的线程,只不过这些线程唤醒的结果是加入到了同步队列的队尾,AQS所做的就是管理这两个队列里面线程之间的等待状态-唤醒的工作。
在同步队列中,还存在2中模式,分别是独占模式和共享模式,这两种模式的区别就在于AQS在唤醒线程节点的时候是不是传递唤醒,这两种模式分别对应独占锁和共享锁。
AQS是一个抽象类,所以不能直接实例化,当我们需要实现一个自定义锁的时候可以去继承AQS然后重写获取锁的方式和释放锁的方式还有管理state,而ReentrantLock就是通过重写了AQS的tryAcquire和tryRelease方法实现的lock和unlock。
详情可以参考 https://juejin.cn/post/7006895386103119908

ReentrantLock实现原理

请添加图片描述

ReentrantLock结构

在这里插入图片描述
ReentrantLock实现Lock接口 有三个内部类 分别是 Sync、NonfairSync、FairSync,其中Sync内部类继承自AQS承接了AQS的功能,NonfairSync代表非公平锁、FairSync 代表公平锁 他们都是继承了Sync类,通过Sync重写的方法tryAcquire、tryRelease可以知道,ReentrantLock实现的是AQS的独占模式,也就是独占锁,这个锁是悲观锁。

非公平锁实现原理

获取锁

请添加图片描述
ReentrantLock有两个构造方法,无参构造方法默认是创建非公平锁,fair传false 也是非公平锁
默认非公平锁 所以子类NonfairSync 实现父类的抽象方法执行 lock
1.先用case 尝试去更新state的值
如果能更新成功就表示可以抢占到锁 把state更新成1 并设置线程信息执行结束
如果更新失败即此时state不等于0代表此时锁被其他线程占据着则执行acquire方法
2.nonfairTryAcquire 首先会获取state的值 判断state是否等于0 如果此时等于0 则代表有线程释放锁了,并且把state改回了0 ,
如果此时state 等于0 就再次尝试用cas 去将state的值由0变更成1 如果变更成功就代表抢占到了锁 然后设置一下线程信息(这里就体现了非公平锁的特性 不会在意阻塞队列中是否有等待的线程)然后结束
如果此时state不等于0 或者 cas 更新 state值失败则代表有线程占据着锁 此时会去判断当前线程是否是获得锁的线程 如果是获得锁的线程则代表是重入的则将state进行+1 然后执行结束
3.如果这个当前线程不是获得锁的线程,则会构建一个Node节点 然后由尾部放到阻塞队列中 park住

    public ReentrantLock() {sync = new NonfairSync();}/*** Creates an instance of {@code ReentrantLock} with the* given fairness policy.** @param fair {@code true} if this lock should use a fair ordering policy*/public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();}
  final void lock() {//cas 原子操作修改state 的值 如果能修改成功则把0变成1 然后记录当前线程idif (compareAndSetState(0, 1))setExclusiveOwnerThread(Thread.currentThread());else//抢占锁逻辑acquire(1);}
  public final void acquire(int arg) {//尝试获取独占锁 if (!tryAcquire(arg) &&//如果失败则假如aqs 队列中acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();}
       final boolean nonfairTryAcquire(int acquires) {//获取当前线程final Thread current = Thread.currentThread();//拿到 State 值    int c = getState();//如果是0 表示可以去获得锁if (c == 0) {//cas 原子操作修改state 的值 如果能修改成功则把0变成1 然后记录当前线程idif (compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}//如果当前线程就是获得锁的线程else if (current == getExclusiveOwnerThread()) {//增加重入次数int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}
 private Node addWaiter(Node mode) {//构建一个nodeNode node = new Node(Thread.currentThread(), mode);// Try the fast path of enq; backup to full enq on failure// tail = 尾节点 默认是nullNode pred = tail;if (pred != null) {//如果尾节点不等于空 把当前节点当成尾节点 然后把prev指针指向上一个节点 把新进来的节点改成尾节点node.prev = pred;if (compareAndSetTail(pred, node)) {//把上一个节点的next 指针指向刚进来的节点pred.next = node;return node;}}enq(node);return node;}
 private Node enq(final Node node) {for (;;) {Node t = tail;if (t == null) { // Must initialize//如果尾节点 = = null 用cas 构建一个节点 if (compareAndSetHead(new Node()))//把头节点赋值给尾节点tail = head;} else {//如果尾节点不等于空 把当前节点当成尾节点 然后把prev指针指向上一个节点 把新进来的节点改成尾节点node.prev = t;if (compareAndSetTail(t, node)) {//把上一个节点的next 指针指向刚进来的节点t.next = node;return t;}}}}
 final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (;;) {//获取当前节点的前一个节点final Node p = node.predecessor();//如果当前节点的前一个结点是头节点 则说明有资格去争夺锁if (p == head && tryAcquire(arg)) {//把当前节点设置成头节点setHead(node);p.next = null; // help GCfailed = false;return interrupted;}if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}}
// 当获取(资源)失败后,检查并且更新结点状态
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {// 获取前驱结点的状态int ws = pred.waitStatus;if (ws == Node.SIGNAL) // 状态为SIGNAL,为-1// 可以进行park操作return true; if (ws > 0) { // 表示状态为CANCELLED,为1do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0); // 找到pred结点前面最近的一个状态不为CANCELLED的结点// 赋值pred结点的next域pred.next = node; } else { // 为PROPAGATE -3 或者是0 表示无状态,(为CONDITION -2时,表示此节点在condition queue中) // 比较并设置前驱结点的状态为SIGNALcompareAndSetWaitStatus(pred, ws, Node.SIGNAL); }// 不能进行park操作return false;
}
 private final boolean parkAndCheckInterrupt() {LockSupport.park(this);return Thread.interrupted();}

释放锁

请添加图片描述
1.判断当前线程是不是锁的所有者,如果是则进行步骤2,如果不是则抛出异常。
2.判断此次释放锁后state的值是否为0,如果是则代表锁有没有重入,然后将锁的所有者设置成null且返回true,然后执行步骤3,如果不是则代表锁发生了重入执行步骤4。
3.现在锁已经释放完,即state=0,唤醒同步队列中的后继节点进行锁的获取。
4.锁还没有释放完,即state!=0,不唤醒同步队列。

 public void unlock() {sync.release(1);}
   public final boolean release(int arg) {//释放锁成功if (tryRelease(arg)) {Node h = head;//如果头节点不为空 并且状态不为0 if (h != null && h.waitStatus != 0)//唤醒unparkSuccessor(h);return true;}return false;}
 protected final boolean tryRelease(int releases) {//state -1int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {//如果c =0 表示当前是无锁状态 把线程iq清空free = true;setExclusiveOwnerThread(null);}//重新设置 statesetState(c);return free;}
private void unparkSuccessor(Node node) {/** If status is negative (i.e., possibly needing signal) try* to clear in anticipation of signalling.  It is OK if this* fails or if status is changed by waiting thread.*/int ws = node.waitStatus;if (ws < 0)//设置head节点的状态为0 compareAndSetWaitStatus(node, ws, 0);/** Thread to unpark is held in successor, which is normally* just the next node.  But if cancelled or apparently null,* traverse backwards from tail to find the actual* non-cancelled successor.*///拿到head节点的下一个节点Node s = node.next;//如果下一个节点为null 或者 status>0则表示是 CANCELLED 状态//听过尾部节点开始扫描  找到距离 head最近的一个 waitStatus<=0的节点if (s == null || s.waitStatus > 0) {s = null;for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}//如果next 节点不等于空直接唤醒这个线程if (s != null)LockSupport.unpark(s.thread);}

公平锁实现原理

请添加图片描述
1.获取状态的state的值,如果state=0即代表锁没有被其它线程占用(但是并不代表同步队列没有线程在等待),执行步骤2。如果state!=0则代表锁正在被其它线程占用,执行步骤3。
2.判断同步队列是否存在线程(节点),如果不存在则直接将锁的所有者设置成当前线程,且更新状态state,然后返回true。
3.判断锁的所有者是不是当前线程,如果是则更新状态state的值,然后返回true,如果不是,那么返回false,即线程会被加入到同步队列中

final void lock() {acquire(1);
}public final void acquire(int arg) {//同步队列中有线程 且 锁的所有者不是当前线程那么将线程加入到同步队列的尾部,//保证了公平性,也就是先来的线程先获得锁,后来的不能抢先获取。if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();
}protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();//判断状态state是否等于0,等于0代表锁没有被占用,不等于0则代表锁被占用着。if (c == 0) {//调用hasQueuedPredecessors方法判断同步队列中是否有线程在等待,如果同步队列中没有//线程在等待 则当前线程成为锁的所有者,如果同步队列中有线程在等待,则继续往下执行//这个机制就是公平锁的机制,也就是先让先来的线程获取锁,后来的不能抢先获取。if (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}//判断当前线程是否为锁的所有者,如果是,那么直接更新状态state,然后返回true。else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}//如果同步队列中有线程存在 且 锁的所有者不是当前线程,则返回false。return false;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/116860.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

arcgis js api FeatureLayer加载时返回数据带*问题

接着这一问题衍生出来的问题 arcgis的MapServer服务查询出来的结果geometry坐标点带*的问题-CSDN博客 个人感觉像是server版本的问题&#xff0c;具体不清楚&#xff0c;pg数据库里面的shape点集合坐标点的精度是8&#xff0c;但是server服务查出来的默认都十几位。所以存在一…

使用CPR库和Python编写程序

以下是一个使用CPR库和Python编写的爬虫程序&#xff0c;用于爬取。此程序使用了proxy的代码。 import requests from cpr import CPR ​ def get_proxy():url "https://www.duoip.cn/get_proxy"headers {"User-Agent": "Mozilla/5.0 (Windows NT …

如何用.bat文件直接安装jar包

大家应该都知道一个maven引入jar包&#xff0c;如果直接把jar包放到目录&#xff0c;这样是没用的&#xff0c;引入还是会失败 这里我们可以创建一个.bat的windows系统文件&#xff0c;写入pom.xml对应的groupid&#xff0c;artifactId&#xff0c;version pom.xml中进入jar包…

RDB.js:适用于 Node.js 和 Typescript 的终极对象关系映射器

RDB.js 是适用于 Node.js 和 Typescript 的终极对象关系映射器&#xff0c;可与 Postgres、MS SQL、MySQL、Sybase SAP 和 SQLite 等流行数据库无缝集成。无论您是使用 TypeScript 还是 JavaScript&#xff08;包括 CommonJS 和 ECMAScript&#xff09;构建应用程序&#xff0c…

Ceres 使用笔记

文章目录 Part.I IntroductionChap.I 预备知识Chap.II 概念理解 Part.II 简单使用Chap.I Ceres 中主要函数简介Chap.II 一个简单的实例 Reference Part.I Introduction Ceres 1 是由 Google 开发的开源 C 通用非线性优化库&#xff0c;与 g2o 并列为目前视觉 SLAM 中应用最广泛…

springboot+vue开发的视频弹幕网站动漫网站

springbootvue开发的视频弹幕网站动漫网站 演示视频 https://www.bilibili.com/video/BV1MC4y137Qk/?share_sourcecopy_web&vd_source11344bb73ef9b33550b8202d07ae139b 功能&#xff1a; 前台&#xff1a; 首页&#xff08;猜你喜欢视频推荐&#xff09;、轮播图、分类…

28、Flink 的SQL之DROP 、ALTER 、INSERT 、ANALYZE 语句

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

cookie过大导致request 400 错误研究

问&#xff1a;get请求太长报400的错误&#xff0c;如何解决&#xff1f;生成系统中经常偶现此问题 问&#xff1a;get请求URL的长度是谁限制的&#xff1f; 问&#xff1a;每一个cookie的value的大小还是同域下cookie的个数做的限制&#xff1f; 现象&#xff1a;出现 400 Ba…

【Python · PyTorch】数据基础

数据基础 1. 数据操作1.1 入门1.2 运算符1.3 广播机制1.4 索引和切片1.5 节省内存1.6 转化为其他Python对象 2. 数据预处理2.1 读取数据集2.2 处理缺失值2.3 转换为张量格式 本文介绍了PyTorch数据基础&#xff0c;Python版本3.9.0&#xff0c;代码于Jupyter Lab中运行&#xf…

人工智能之深度学习

1. 引言 时至今日&#xff0c;人们常用的计算机程序几乎都是软件开发人员从零编写的。 比如&#xff0c;现在开发人员要编写一个程序来管理网上商城。 经过思考&#xff0c;开发人员可能提出如下一个解决方案&#xff1a; 首先&#xff0c;用户通过Web浏览器&#xff08;或移动…

Elasticsearch的聚集统计,可以进行各种统计分析

说明&#xff1a; Elasticsearch不仅是一个大数据搜索引擎&#xff0c;也是一个大数据分析引擎。它的聚集(aggregation)统计的REST端点可用于实现与统计分析有关的功能。Elasticsearch提供的聚集分为三大类。 度量聚集(Metric aggregation)&#xff1a;度量聚集可以用于计算搜…

MyBatisPlus的使用【详细】

目录 Mybatis MybatisPlus特性 MybatisPlus的使用 常见注解 TableName TableId TableField MP常见配置 条件查询器Wrapper QueryWrapper UpdateWrapper LambdaQueryWrapper 自定义SQL Service接口 批量添加数据 MP的代码生成 MP静态工具 MP扩展功能之逻辑删除…

C++栈、队列、优先级队列模拟+仿函数

目录 一、栈的模拟和deque容器 1.deque 1.1deque结构 1.2deque优缺点 2.stack模拟 二、队列的模拟 三、priority_queue优先级队列 1.优先级队列模拟 2.添加仿函数 一、栈的模拟和deque容器 在之前&#xff0c;我们学过了C语言版本的栈&#xff0c;可以看这篇文章 栈和…

【刷题篇】笔试真题

文章目录 复数乘法一年中的第几天字符串相加字符串相乘 复数乘法 复数 可以用字符串表示&#xff0c;遵循 “实部虚部i” 的形式&#xff0c;并满足下述条件&#xff1a; 实部 是一个整数&#xff0c;取值范围是 [-100, 100] 虚部 也是一个整数&#xff0c;取值范围是 [-100, 1…

MySQL字段加密方案 安当加密

要通过安当KSP密钥管理系统实现MySQL数据库字段的加密&#xff0c;您可以按照以下步骤进行操作&#xff1a; 安装和配置安当KSP密钥管理系统&#xff1a;首先&#xff0c;您需要安装安当KSP密钥管理系统&#xff0c;并按照说明进行配置。确保您已经正确地设置了密钥管理系统的用…

C语言知识回顾

链接&#xff1a;https://pan.baidu.com/s/1CiB1Ydm4LTV6hZE8wx0VFw?pwdna4z 提取码&#xff1a;na4z --来自百度网盘超级会员V6的分享

判断过/欠拟合和学习率

一、说明 这篇博客是判断是否过拟合和学习率大小的问题&#xff0c;并没有给出解决办法。因为每个人的网络模型不一样&#xff0c;解决办法也不同。因此&#xff0c;如果需要解决办法的话&#xff0c;请参考其他博客。 二、拟合问题 1.train_loss 不断下降&#xff0c;test_los…

【Linux系统编程:信号】产生信号 | 阻塞信号 | 处理信号 | 可重入函数

写在前面 通过学习信号可以理解进程与进程的一个相对关系&#xff0c;还能理解操作系统与进程的关系。要注意的是进程间通信中的信号量与这里的信号没有半毛钱关系&#xff0c;就像老婆和老婆饼。 本文要点&#xff1a; 掌握 Linux 信号的基本概念掌握信号产生的一般方式理解…

Unity之ShaderGraph如何实现触电电流效果

前言 之前使用ASE做过一个电流效果的shader&#xff0c;今天我们通过ShaderGraph来实现一个电流效果。 效果如下&#xff1a; 关键节点 Simple Noise&#xff1a;根据输入UV生成简单噪声或Value噪声。生成的噪声的大小由输入Scale控制。 Power&#xff1a;返回输入A的结果…

统信UOS技术开放日:四大领域全面接入AI大模型能力

1024是程序员的节日&#xff0c;10月24日&#xff0c;统信举办2023统信UOS技术开放日暨deepin Meetup北京站活动&#xff0c;发布与大模型同行的UOS AI、浏览器AI助手、邮箱AI助手、自然语言全局搜索、畅写在线等多项最新AI技术与产品应用。 统信软件高级副总经理、CTO、深度社…