pytorch 入门 (四)案例二:人脸表情识别-VGG16实现

实战教案二:人脸表情识别-VGG16实现

本文为🔗小白入门Pytorch内部限免文章
参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可

  • 🍨 本文为🔗小白入门Pytorch中的学习记录博客
  • 🍦 参考文章:【小白入门Pytorch】人脸表情识别-VGG16实现
  • 🍖 原作者:K同学啊

数据集下载:
链接:https://pan.baidu.com/s/1RvlpOx8v6MudY65Oi78-kQ?pwd=zhfo
提取码:zhfo
–来自百度网盘超级会员V4的分享

目录

  • 实战教案二:人脸表情识别-VGG16实现
    • 一、导入数据
    • 二、VGG-16算法模型
      • 1. 优化器与损失函数
      • 2. 模型的训练
    • 三、可视化

一、导入数据

from torchvision.datasets   import CIFAR10 # CIFAR10是一个用于计算机视觉的经典数据集,其中包含60000张32x32的彩色图像,分为10个类别,每个类别有6000张图像。
from torchvision.transforms import transforms # 这是一个常用的模块,用于图像的预处理和增强。
from torch.utils.data       import DataLoader # 可以将数据集转化为迭代器的工具,方便在训练循环中加载数据。
from torchvision            import datasets # 导入了torchvision下的所有数据集,但实际上这与前面导入CIFAR10是重复的,可能是不必要的。
from torch.optim            import Adam # 导入了Adam优化器。Adam是一个常用的、表现良好的深度学习优化器。
import torchvision.models   as models # 这个模块提供了各种预训练模型,例如ResNet、VGG、DenseNet等。
import torch.nn.functional  as F # 提供了各种激活函数、损失函数和其他的功能函数。
import torch.nn             as nn # 这个模块提供了构建神经网络所需的各种工具,如层、损失函数等。
import torch,torchvision # torch是PyTorch的核心库,提供了基础的张量操作;torchvision则是与计算机视觉相关的库,提供了数据集、预处理方法和预训练模型。
train_datadir = '/home/mw/input/kzb324321357/2-Emotion_Images/2-Emotion_Images/train'
test_datadir  = '/home/mw/input/kzb324321357/2-Emotion_Images/2-Emotion_Images/test'train_transforms = transforms.Compose([transforms.Resize([48, 48]),    # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transforms = transforms.Compose([transforms.Resize([48, 48]),    # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])# 使用 datasets.ImageFolder 加载训练数据集和测试数据集
# ImageFolder假定所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类别的名字。
# 同时,为加载的数据应用了之前定义的预处理流程。
train_data = datasets.ImageFolder(train_datadir, transform=train_transforms)
test_data = datasets.ImageFolder(test_datadir, transform=test_transforms)

torch.utils.data.DataLoader详解

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

函数原型:

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)

参数说明:

  • dataset(string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle(bool,optional) : 如果为True,每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers(int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last(bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout(numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn(callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。 (默认:None)
# 创建训练数据加载器(data loader),用于将数据分成小批次进行训练
train_loader = torch.utils.data.DataLoader(train_data,batch_size=16,      # 每个批次包含的图像数量shuffle=True,       # 随机打乱数据num_workers=4)      # 使用多少个子进程来加载数据# 创建测试数据加载器(data loader),用于将测试数据分成小批次进行测试
test_loader = torch.utils.data.DataLoader(test_data,batch_size=16,      # 每个批次包含的图像数量shuffle=True,       # 随机打乱数据num_workers=4)      # 使用多少个子进程来加载数据# 打印数据集的信息
# 请注意,这里使用len(train_loader) * 16来计算图像总数是基于批次大小为16的假设。
# 实际上,最后一个批次的图像数量可能少于16。
print("The number of images in a training set is: ", len(train_loader) * 16)  # 计算训练集中的图像总数
print("The number of images in a test set is: ", len(test_loader) * 16)      # 计算测试集中的图像总数
print("The number of batches per epoch is: ", len(train_loader))             # 计算每个 epoch 中的批次数# 定义数据集的类别标签
classes = ('Angry', 'Fear', 'Happy', 'Surprise')
The number of images in a training set is:  18480
The number of images in a test set is:  2320
The number of batches per epoch is:  1155

二、VGG-16算法模型

device = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device))# 直接调用官方封装好的VGG16模型
model = models.vgg16(pretrained = True)
model
Using cuda device

Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /home/mw/.cache/torch/hub/checkpoints/vgg16-397923af.pth

HBox(children=(FloatProgress(value=0.0, max=553433881.0), HTML(value='')))

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=1000, bias=True))
)

1. 优化器与损失函数

optimizer = Adam(model.parameters(),lr = 0.0001,weight_decay = 0.0001)
loss_model = nn.CrossEntropyLoss()
import torch
from torch.autograd import Variable
# 定义训练函数
def train(model,train_loader,loss_model,optimizer):# 将模型移动到指定设备(如:GPU)model = model.to(device)# 将模型设置为训练模式(启用梯度计算)model.train()for i,(images,labels) in enumerate(train_loader,0):# 将输入数据和标签移动到指定设备images = Variable(images.to(device))labels = Variable(labels.to(device))# 梯度清零optimizer.zero_grad()# 前向传播得到模型输出outputs = model(images)# 计算损失loss = loss_model(outputs,labels)# 反向传播loss.backward()# 更新模型参数optimizer.step()# 每隔1000个批次输出一次损失if i%1000 == 0:print('[%5d] loss: %.3f' % (i,loss))# 定义测试函数
def test(model,test_loader,loss_model):# 获取测试数据集大小size = len(test_loader.dataset)# 获取测试数据批次数num_batches = len(test_loader)# 将模型设置为评估模式(不进行梯度计算)model.eval()test_loss,correct = 0,0# 在不计算梯度的上下文中执行测试with torch.no_grad():for X,y in test_loader:X,y = X.to(device),y.to(device)# 使用模型进行前向传播得到预测pred = model(X)# 计算损失值,并将其累积到test_loss中test_loss += loss_model(pred,y).item()# 计算正确预测的数量correct += (pred.argmax(1)==y).type(torch.float).sum().item()# 计算平均测试损失和准确率test_loss /= num_batchescorrect /= sizeprint(f"Test Error:\n Accuracy:{(100*correct):>0.1f}%,Avg loss:{test_loss:>8f} \n")return correct,test_loss

提问:梯度清零有三种放置方法吗,放到循环最前面或者最后面,或者反向传播之前

是的,您理解得很准确。在PyTorch中,optimizer.zero_grad()的位置有一定的灵活性。以下是这三种常见的放置方法:

  1. 循环开始时:在每次迭代的最开始,即前向传播之前,清零梯度。
  2. 反向传播之前:在前向传播之后、反向传播之前,清零梯度。这也是您提供的代码中使用的方法。
  3. 循环结束时:在每次迭代的最后,即更新参数之后,清零梯度。

这三种方法在大多数情况下都是等效的,因为关键是确保在进行下一次反向传播之前梯度是清零的。

但是,如果您在一个迭代中进行多次反向传播(例如,当您想要累加梯度时),那么您必须在每次反向传播之前清零梯度。在这种特定情境中,第二种方法(反向传播之前)是最合适的。

对于大多数常规的训练循环,选择哪种方法主要是根据个人偏好或代码的可读性来决定的。

2. 模型的训练

# 创建一个空列表用于存储每个epoch的测试集准确率
test_acc_list = []
# 定义训练的总论数
epochs = 10# 开始训练循环,每个epoch 都会执行一下操作
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")# 在训练数据上训练模型train(model,train_loader,loss_model,optimizer)# 在测试数据集上测试模型的性能,并获取测试准确率和测试损失test_acc,test_loss = test(model,test_loader,loss_model)# 将测试准确率添加到列表中,以便后续分析test_acc_list.append(test_acc)# 所有epoch完成后打印完成消息
print("Done!")
Epoch 1
-------------------------------
[    0] loss: 0.129
[ 1000] loss: 0.005
Test Error:Accuracy:77.4%,Avg loss:1.069592 Epoch 2
-------------------------------
[    0] loss: 0.028
[ 1000] loss: 0.055
Test Error:Accuracy:78.7%,Avg loss:0.976879 Epoch 3
-------------------------------
[    0] loss: 0.033
[ 1000] loss: 0.050
Test Error:Accuracy:77.9%,Avg loss:1.202651 Epoch 4
-------------------------------
[    0] loss: 0.051
[ 1000] loss: 0.356
Test Error:Accuracy:79.0%,Avg loss:1.080943 Epoch 5
-------------------------------
[    0] loss: 0.001
[ 1000] loss: 0.183
Test Error:Accuracy:78.7%,Avg loss:1.248081 Epoch 6
-------------------------------
[    0] loss: 0.003
[ 1000] loss: 0.127
Test Error:Accuracy:78.4%,Avg loss:1.129110 Epoch 7
-------------------------------
[    0] loss: 0.003
[ 1000] loss: 0.076
Test Error:Accuracy:77.6%,Avg loss:1.200314 Epoch 8
-------------------------------
[    0] loss: 0.042
[ 1000] loss: 0.071
Test Error:Accuracy:78.0%,Avg loss:1.149877 Epoch 9
-------------------------------
[    0] loss: 0.002
[ 1000] loss: 0.212
Test Error:Accuracy:78.0%,Avg loss:1.353625 Epoch 10
-------------------------------
[    0] loss: 0.001
[ 1000] loss: 0.001
Test Error:Accuracy:78.5%,Avg loss:1.249242 Done!
test_acc_list
[0.773552290406223,0.7869490060501296,0.7791702679343129,0.7904062229904927,0.7869490060501296,0.783923941227312,0.7757130509939498,0.780466724286949,0.780466724286949,0.7852203975799481]

三、可视化

import numpy as np
import matplotlib.pyplot as pltx = [i for i in range(1,11)]plt.plot(x,test_acc_list,label="line ACC",alpha = 0.8)plt.xlabel("epoch")
plt.ylabel("acc")plt.legend()
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/116180.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为数通方向HCIP-DataCom H12-831题库(多选题:21-40)

第21题 网络管理员A希望使用ACL匹配特定的路由条目,请问以下哪些路由条目将被图中的ACL规侧匹配? acl number 2000 rule 10 permit source 10.0.0.0 0.0.6.0A、10.0.0.1/32 B、10.0.0.0/24 C、10.0.1.0/24 D、10.0.2.0/24 答案: 解析: 通配符十进制6转换二进制为00000110,…

提升药店效率:山海鲸医药零售大屏的成功案例

在医药行业中,特别是医药零售领域,高效的药品管理和客户服务至关重要。随着科技的飞速发展,数字化解决方案已经成为提高医药零售管控效率的有效工具之一。其中,医药零售管控大屏作为一种强大的工具,正在以独特的方式改…

互联网Java工程师面试题·Spring篇·第二弹

目录 3、Beans 3.1、什么是 spring bean? 3.2、spring 提供了哪些配置方式? 3.3、spring 支持集中 bean scope? 3.4、spring bean 容器的生命周期是什么样的? 3.5、什么是 spring 的内部 bean? 3.6、什么是 spri…

ONEPIECE!程序环境和预处理——C语言最终章

时间过得飞快呀,从第一篇blog到现在,已经有三四个月的时间了,而我们终于也迎来了C语言的最终章——程序环境和预处理!加油吧朋友们,ONEPIECE就在眼前~ 目录 一、程序的"翻译环境"和"运行环境" 二…

Biotech - 环状 mRNA 的 LNP 递送系统 与 成环框架

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/133992971 环状 RNA(或 circRNA )是一种单链 RNA,与线性 RNA 不同,形成一个共价闭合的连续环。在环…

Hadoop+Hive+Spark+Hbase开发环境练习

1.练习一 1.数据准备 在hdfs上创建文件夹,上传csv文件 [rootkb129 ~]# hdfs dfs -mkdir -p /app/data/exam 查看csv文件行数 [rootkb129 ~]# hdfs dfs -cat /app/data/exam/meituan_waimai_meishi.csv | wc -l 2.分别使用 RDD和 Spark SQL 完成以下分析&#xf…

零代码编程:用ChatGPT多线程批量将PDF文档转换为word格式

pdf2docx是Python的一个库,可以很方便的将PDF文档转换为word格式,首先安装这个库。 然后在ChatGPT中输入提示词: 你是一个Python编程专家,要完成一个文档格式转换的任务,具体步骤如下: 打开F盘的Books文件…

强化学习代码实战(1)

机器人领域:控制,规划,感知等都可以用,可以把它作为一个优化过程,那么任何需要优化的问题都可以用它解决。 1.应用 深度学习:智能感知,解决智能如何理解这个世界的问题。 强化学习&#xff1a…

python之代理ip的配置与调试方法详解

代理IP在Python中是一种强大的工具,它可以用于隐藏真实IP地址、绕过访问限制、提高数据爬取和网络请求的效率等。下面将详细介绍Python中代理IP的配置与调试方法,帮助您更好地理解和应用代理IP。 1. 选择合适的代理IP 在使用代理IP之前,需要…

vue v-for

目录 前言:Vue.js 中的 v-for 指令 详解:v-for 指令的基本概念 用法:v-for 指令的实际应用 1. 列表渲染 2. 动态组件 3. 表单选项 4. 嵌套循环 5. 键值对遍历 解析:v-for 指令的优势和局限性 优势: 局限性&a…

网络通信和tcp协议

一、计算机网络架构模型 1、OSI七层模型 2、TCP/IP模型 3、TCP/IP协议族 无论是什么网络模型,都是为上一层提供服务,抽象层建立在低一层提供的服务上,每层都对应不同的协议 4、地址和端口号 1)MAC地址 MAC 地址共 48 位&#…

RAM(recognize anything)—— 论文详解

一、概述 1、是什么 RAM 论文全称 Recognize Anything: A Strong Image Tagging Model。区别于图像领域常见的分类、检测、分割,他是标记任务——即多标签分类任务(一张图片命中一个类别),区分于分类(一张图片命中一个…

Java基础(第一期):IDEA的下载和安装(步骤图) 项目结构的介绍 项目、模块、类的创建。第一个代码的实现

文章目录 IDEA1.1 IDEA概述1.2 IDEA的下载和安装1.2.1 下载1.2.2 安装 1.3 IDEA中层级结构介绍1.3.1 结构分类1.3.2 结构介绍project(项目、工程)module(模块)package(包)class(类) …

【Javascript】等于与全等于

var a1;if(a1){console.log(你好!!);} 如果a赋值为 1 的时候 var a1;if(a1){console.log(你好!!);}仍然会执行 console.log(你好!!); 所以在开发中如果if语句里要使用等于的时候使用 var a1;if(a1)…

基于Java的疫苗接种管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding) 代码参考数据库参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&am…

LeetCode 11. 盛最多水的容器

盛水最多的容器 题目链接 11. 盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。…

2023 uniapp( vue3)使用canvas生成海报并保存,taro/微信小程序也适用

有段时间没写vue了&#xff0c;有点生疏了...... 1、代码有注释&#xff0c;完整代码如下 <template><view class"page"><canvas class"canvas" v-if"isShow" :style"{width:${canvasWidth}px,height:${canvasHeight}px}&…

uni-app 小宠物 - 会说话的小鸟

在 template 中 <view class"container"><view class"external-shape"><view class"face-box"><view class"eye-box eye-left"><view class"eyeball-box eyeball-left"><span class"…

【通览一百个大模型】Baize(UCSD)

【通览一百个大模型】Baize&#xff08;UCSD&#xff09; 作者&#xff1a;王嘉宁&#xff0c;本文章内容为原创&#xff0c;仓库链接&#xff1a;https://github.com/wjn1996/LLMs-NLP-Algo 订阅专栏【大模型&NLP&算法】可获得博主多年积累的全部NLP、大模型和算法干货…

Delphi 编程实现拖动排序并输出到文档

介绍&#xff1a;实现拖动排序功能&#xff0c;并将排序后的内容输出到文档中。我们将使用 Delphi 的组件来创建一个界面&#xff0c;其中包括一个 Memo 控件用于输入内容&#xff0c;一个 ListBox 控件用于显示排序后的内容&#xff0c;并且提供按钮来触发排序和输出操作。 代…