数据分析和机器学习的11个高级可视化图表介绍

可视化是一种强大的工具,用于以直观和可理解的方式传达复杂的数据模式和关系。它们在数据分析中发挥着至关重要的作用,提供了通常难以从原始数据或传统数字表示中辨别出来的见解。

可视化对于理解复杂的数据模式和关系至关重要,我们将介绍11个最重要和必须知道的图表,这些图表有助于揭示数据中的信息,使复杂数据更加可理解和有意义。

1、KS Plot

KS Plot用来评估分布差异。其核心思想是测量两个分布的累积分布函数(CDF)之间的最大距离。最大距离越小,它们越有可能属于同一分布。所以它主要被解释为确定分布差异的“统计检验”,而不是“图”。

2、SHAP Plot

SHAP Plot通过考虑特征之间的相互作用/依赖关系来总结特征对模型预测的重要性。在确定一个特征的不同值(低或高)如何影响总体输出时很有用。

3、ROC Curve

ROC曲线描述了跨不同分类阈值的真阳性率(良好的性能)和假阳性率(糟糕的性能)之间的权衡。它展示了分类器在不同阈值下的灵敏度(True Positive Rate,TPR)和特异度(True Negative Rate,TNR)之间的权衡关系。

ROC曲线是一种常用的工具,特别适用于评估医学诊断测试、机器学习分类器、风险模型等领域的性能。通过分析ROC曲线和计算AUC,可以更好地理解分类器的性能,选择适当的阈值,以及比较不同模型之间的性能。

4、Precision-Recall Curve

Precision-Recall(精确度-召回率)曲线是用于评估分类模型性能的另一种重要工具,特别适用于不平衡类别分布的问题,其中正类别和负类别样本数量差异较大。这个曲线关注模型在正类别的预测准确性和能够找出所有真正正例的能力。它描述了不同分类阈值之间的精确率和召回率之间的权衡。

5、QQ Plot

QQ Plot(Quantile-Quantile Plot,分位数-分位数图)是一种用于比较两个数据集的分位数分布是否相似的数据可视化工具。它通常用于检查一个数据集是否符合某种特定的理论分布,如正态分布。

它评估观测数据与理论分布之间的分布相似性。绘制了两个分布的分位数。偏离直线表示偏离假定的分布。

QQ Plot是一种直观的工具,可用于检查数据的分布情况,尤其是在统计建模和数据分析中。通过观察QQ Plot上的点的位置,你可以了解数据是否符合某种理论分布,或者是否存在异常值或偏差。

6、Cumulative Explained Variance Plot

Cumulative Explained Variance Plot(累积解释方差图)是在主成分分析(PCA)等降维技术中常用的图表,用于帮助解释数据中包含的方差信息以及选择合适的维度来表示数据。

数据科学家和分析师会根据Cumulative Explained Variance Plot中的信息来选择适当数量的主成分,以便在降维后仍能够有效地表示数据的特征。这有助于减少数据维度,提高模型训练效率,并保留足够的信息来支持任务的成功完成。

7、Elbow Curve

Elbow Curve(肘部曲线)是一种用于帮助确定K-Means聚类中最佳簇数(聚类数目)的可视化工具。K-Means是一种常用的无监督学习算法,用于将数据点分为不同的簇或群组。Elbow Curve有助于找到合适的簇数,以最好地表示数据的结构。

Elbow Curve是一种常用的工具,用于帮助选择K-Means聚类中的最佳簇数,肘部的点表示理想的簇数。这样可以更好地捕获数据的内在结构和模式。

8、Silhouette Curve

Silhouette Curve(轮廓系数曲线)是一种用于评估聚类质量的可视化工具,通常用于帮助选择最佳聚类数。轮廓系数是一种度量,用于衡量聚类中簇内数据点的相似性和簇间数据点的分离程度。

Silhouette Curve是一种有力的工具,用于帮助选择最佳的聚类数,以确保聚类模型能够有效地捕获数据的内在结构和模式。在有很多簇时,肘部曲线通常是无效的。Silhouette Curve是一个更好的选择。

9、Gini-Impurity and Entropy

Gini Impurity(基尼不纯度)和Entropy(熵)是两种常用于决策树和随机森林等机器学习算法中的指标,用于评估数据的不纯度和选择最佳分裂属性。它们都用于衡量数据集中的混乱度,以帮助决策树选择如何划分数据。

它们用于测量决策树中节点或分裂的杂质或无序。上图比较了基尼不纯和熵在不同的分裂,这可以提供了对这些度量之间权衡的见解。

两者都是有效的指标,用于决策树等机器学习算法中的节点分裂选择,但选择哪个取决于具体的问题和数据特征。

10、Bias-Variance Tradeoff

Bias-Variance Tradeoff(偏差-方差权衡)是机器学习中一个重要的概念,用于解释模型的预测性能和泛化能力之间的平衡。

偏差和方差之间存在权衡关系。在训练机器学习模型时,增加模型的复杂性通常会降低偏差但增加方差,而降低模型复杂性则会降低方差但增加偏差。因此,存在一个权衡点,其中模型既能够捕获数据的模式(降低偏差),又能够对不同数据表现出稳定的预测(降低方差)。

理解偏差-方差权衡有助于机器学习从业者更好地构建和调整模型,以实现更好的性能和泛化能力。它强调了模型的复杂性和数据集大小之间的关系,以及如何避免欠拟合和过拟合。

11、Partial Dependency Plots:

Partial Dependency Plots(部分依赖图)是一种用于可视化和解释机器学习模型的工具,特别适用于了解单个特征对模型预测的影响。这些图形有助于揭示特征与目标变量之间的关系,以便更好地理解模型的行为和决策。

Partial Dependency Plots通常与解释性工具和技术一起使用,如SHAP值、LIME等,以帮助解释黑盒机器学习模型的预测。它们提供了一种可视化方式,使数据科学家和分析师更容易理解模型的决策和特征之间的关系。

总结

这些图表涉及了数据分析和机器学习领域中常用的可视化工具和概念,这些工具和概念有助于评估和解释模型性能、理解数据分布、选择最佳参数和模型复杂性,以及洞察特征对预测的影响。

https://avoid.overfit.cn/post/03779f17634e4962a753a706e1cdbc4c

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/116094.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试题—JAVA基础①

文章目录 1.Java面向对象有哪些特征?2.ArrayList和LinkedList有什么区别?3.Java接口和抽象类有哪些区别?4.hashcode和equals如何使用?5.try-catch6.局部变量和实例变量7.String、StringBuffer、StringBuilder 的区别?8…

编程小白的自学笔记十七(python办公自动化操作EXCEL表格之作图)

系列文章目录 编程小白的自学笔记十六(python办公自动化操作EXCEL表格) 编程小白的自学笔记十五(python办公自动化操作EXCEL表格) 编程小白的自学笔记十四(python办公自动化创建、复制、移动文件和文件夹 编程小白…

12. 机器学习 - 拟合

Hi, 你好. 我是茶桁. 这一节课一开始我们要说一个非常重要的概念: 拟合. 拟合 相信只要你关注机器学习, 那么多少在某些场合下都会听到拟合这个概念. 什么叫做拟合,什么叫做过拟合或者欠拟合呢? 假如有一个模型, 这个模型在训练数据的时候效果很好, 体现在loss很小, 或者说…

系统配置与性能评价

系统配置与性能评价(0-2分) 章节介绍 系统性能(性能指标) 在web服务器的测试中,反映其性能的指标主要有最大并发连接数,响应延迟和吞吐量等。 常见的web服务器性能评测方法有基准性能测试,压力…

决策树完成图片分类任务

数据集要求: 训练集 和 验证集 (要求分好) 图片放置规则 : 一个总文件夹 放类别名称的子文件夹 其中子文件夹 为存放同一类别图片 举个例子 分类动物 则 总文件夹名称为动物 子文件夹为 猫 狗 猪猪 。。。 其中猫的文件夹里面…

css-边框流水线

效果图&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8"><meta name"viewport" content"initial-scale1.0, user-scalableno" /><title></title><style type&…

Java将djvu文件转成pdf

需求来源 迫于有部分资源是djvu格式的文件&#xff0c;需要预览这部分文件&#xff0c;web端无法直接预览djvu&#xff0c;所以需要将djvu转成pdf。 转换方法 简单来说就是先把djvu文件转换成tiff文件&#xff0c;再将tiff文件转换成pdf文件。 Ubuntu服务器 如果服务器是U…

二分查找:如何快速定位IP对应的省份地址?

文章来源于极客时间前google工程师−王争专栏。 通过IP地址查找IP归属地功能&#xff1a; 这个功能是通过维护一个很大的IP地址库来实现。地址库中包含IP地址范围和归属地的对应关系。 当我们查询202.201.133.13这个IP地址归属地时&#xff0c;在地址库中搜索&#xff0c;这个…

H3C AC通过Web平台进行AC软件的升级?

软件升级的流程 1、获取软件版本 登录新华三官网&#xff08;首页>产品支持与服务>文档与软件>软件下载&#xff09;&#xff0c;将指定的软件版本下载至本地。 无线路由器-无线接入点-无线控制器-新华三集团-H3C 官网软件下载公共账号密码&#xff1a;账号&#x…

c语言刷题(第8周)

输入整数m,n&#xff08;m&#xff1c;n&#xff09;&#xff0c;输出[m,n]之间所有能被3&#xff0c;不能被4整除的所有数并求和&#xff0c;输出时每行显示5个数。 题干输入整数m,n&#xff08;m&#xff1c;n&#xff09;&#xff0c;输出[m,n]之间所有能被3&#xff0c;不…

C++进阶篇2---多态

1.多态的概念 多态的概念&#xff1a;通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是当不同的对象&#xff0c;去完成某个行为&#xff0c;会产生不同的状态 举个例子&#xff1a;同样是吃饭&#xff0c;狗吃狗粮&#xff0c;猫吃猫粮&#xff0c;不同的对象&#…

nodejs+vue大学生社团管理系统

通过软件的需求分析已经获得了系统的基本功能需求&#xff0c;根据需求&#xff0c;将大学生社团管理系统平台功能模块主要分为管理员模块。管理员添加社团成员管理、社团信息管理&#xff0c;社长管理、用户注册管理等操作。 目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1…

asp.net社区医疗辅助诊断网站系统VS开发sqlserver数据库web结构c#编程

一、源码特点 asp.net社区医疗辅助诊断网站系统 是一套完善的web设计管理系统&#xff0c;系统采用mvc模式&#xff08;BLLDALENTITY&#xff09;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver200…

spring懒加载

简介 Spring默认会在容器初始化的过程中&#xff0c;解析xml或注解&#xff0c;创建配置为单例的bean并保存到一个map中&#xff0c;这样的机制在bean比较少时问题不大&#xff0c;但一旦bean非常多时&#xff0c;spring需要在启动的过程中花费大量的时间来创建bean &#xff0…

Flink学习笔记(四):Flink 四大基石之 Window 和 Time

文章目录 1、 概述2、 Flink 的 Window 和 Time2.1、Window API2.1.1、WindowAssigner2.1.2、Trigger2.1.3、Evictor 2.2、窗口类型2.2.1、Tumbling Windows2.2.2、Sliding Windows2.2.3、Session Windows2.2.4、Global Windows 2.3、Time 时间语义2.4、乱序和延迟数据处理2.5、…

Git(一)Windows下安装及使用Git Bash

目录 一、简介1.1 什么是Git&#xff1f;1.2 Git 的主要特点1.3 什么是 Git Bash&#xff1f; 二、下载三、安装3.1 同意协议3.2 选择安装位置3.3 其他配置&#xff08;【Next】 即可&#xff09;3.4 安装完毕3.5 打开 Git Bash 官网地址&#xff1a; https://www.git-scm.com/…

视频去噪网络BSVD的实现

前些天写了视频去噪网络BSVD论文的理解&#xff0c;详情请点击这里&#xff0c;这两个星期动手实践了一下&#xff0c;本篇就来记录一下这个模型的实现。 这个网络的独特之处在于&#xff0c;它的训练和推理在实现上有所差别。在训练阶段&#xff0c;其使用了TSM&#xff08;T…

基于斑马优化的BP神经网络(分类应用) - 附代码

基于斑马优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于斑马优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.斑马优化BP神经网络3.1 BP神经网络参数设置3.2 斑马算法应用 4.测试结果&#xff1a;5.M…

虚拟机安装centos系统后配置桥接网络

一.桥接网络和nat网络的区别 桥接模式 通过使用物理机网卡 具有单独ip,但是需要手动配置。 在bridged模式下&#xff0c;VMWare虚拟出来的操作系统就像是局域网中的一台独立的主机&#xff0c;它可以访问网内任何一台机器。主机网卡和虚拟网卡的IP地址处于同一个网段&#xff…

Mybatis的SqlRunner执行流程

Mybatis的SqlRunner执行流程 SqlRunner exec new SqlRunner(connection); Map<String, Object> row exec.selectOne("SELECT * FROM PRODUCT WHERE PRODUCTID ?", "FI-SW-01");connection.close();assertEquals("FI-SW-01", row.ge…