11.1 引言
UDP是一个简单的面向数据报的运输层协议:进程的每个输出操作都正好产生一个UDP数据报,并组装成一份待发送的IP数据报。这与面向流字符的协议不同,如TCP,应用程序产生的全体数据与真正发送的单个IP数据报可能没有什么联系。
UDP数据报封装成一份IP数据报的格式如图11-1所示。
RFC 768[Postel 1980]是UDP的正式规规范。
UDP不提供可靠性:它把应用程序传给IP层的数据发送出去,但是并不保证它们能到达目的地。由于缺乏可靠性,我们似乎觉得要避免使用UDP而使用一种可靠协议如TCP。我们在第17章讨论完TCP后将再回到这个话题,看看什么样的应用程序可以使用UDP。
应用程序必须关心IP数据报的长度。如果它超过网络的MTU(2.8节),那么就要对IP数据报进行分片。如果需要,源端到目的端之间的每个网络都要进行分片,并不只是发送端主机连接第一个网络才这样做(我们在2.9节中已定义了路径MTU的概念)。在11.5节中,我们将讨论IP分片机制。
11.2 UDP首部
UDP首部的各字段如图11-2所示。
端口号表示发送进程和接收进程。在图1-8中,我们画出了TCP和UDP用目的端口号来分用来自IP层的数据的过程。由于IP层已经把IP数据报分配给TCP或UDP(根据IP首部中协议字段值),因此TCP端口号由TCP来查看,而UDP端口号由UDP来查看。TCP端口号与UDP端口号是相互独立的。
UDP长度字段指的是UDP首部和UDP数据的字节长度。该字段的最小值为8字节(发送一份0字节的UDP数据报是OK)。这个UDP长度是有冗余的。IP数据报长度指的是数据报全长(图3-1),因此UDP数据报长度是全长减去IP首部的长度(该值在首部长度字段中指定,如图3-1所示)。
11.3 UDP检验和
UDP检验和覆盖UDP首部和UDP数据。回想IP首部的检验和,它只覆盖IP的首部—并不覆盖IP数据报中的任何数据。
UDP和TCP在首部中都有覆盖它们首部和数据的检验和。UDP的检验和是可选的,而TCP的检验和是必需的。
尽管UDP检验和的基本计算方法与我们在3.2节中描述的IP首部检验和计算方法相类似(16 bit字的二进制反码和),但是它们之间存在不同的地方。首先,UDP数据报的长度可以为奇数字节,但是检验和算法是把若干个16 bit字相加。解决方法是必要时在最后增加填充字节0,这只是为了检验和的计算(也就是说,可能增加的填充字节不被传送)。
其次,UDP数据报和TCP段都包含一个12字节长的伪首部,它是为了计算检验和而设置的。伪首部包含IP首部一些字段。其目的是让UDP两次检查数据是否已经正确到达目的地(例如,IP没有接受地址不是本主机的数据报,以及IP没有把应传给另一高层的数据报传给UDP)。UDP数据报中的伪首部格式如图11-3所示。
在该图中,我们特地举了一个奇数长度的数据报例子,因而在计算检验和时需要加上填充字节。注意,UDP数据报的长度在检验和计算过程中出现两次。
如果检验和的计算结果为0,则存入的值为全1(65535),这在二进制反码计算中是等效的。如果传送的检验和为0,说明发送端没有计算检验和。
如果发送端没有计算检验和而接收端检测到检验和有差错,那么UDP数据报就要被悄悄地丢弃。不产生任何差错报文(当IP层检测到IP首部检验和有差错时也这样做)。
UDP检验和是一个端到端的检验和。它由发送端计算,然后由接收端验证。其目的是为了发现UDP首部和数据在发送端到接收端之间发生的任何改动。
尽管UDP检验和是可选的,但是它们应该总是在用。在80年代,一些计算机产商在默认条件下关闭UDP检验和的功能,以提高使用UDP协议的NFS(Network File System)的速度。在单个局域网中这可能是可以接受的,但是在数据报通过路由器时,通过对链路层数据帧进行循环冗余检验(如以太网或令牌环数据帧)可以检测到大多数的差错,导致传输失败。不管相信与否,路由器中也存在软件和硬件差错,以致于修改数据报中的数据。如果关闭端到端的UDP检验和功能,那么这些差错在UDP数据报中就不能被检测出来。另外,一些数据链路层协议(如SLIP)没有任何形式的数据链路检验和。
11.3.1 tcpdump输出
很难知道某个特定系统是否打开了UDP检验和选项。应用程序通常不可能得到接收到的UDP首部中的检验和。为了得到这一点,作者在tcpdump程序中增加了一个选项,以打印出接收到的UDP检验和。如果打印出的值为0,说明发送端没有计算检验和。
测试网络上三个不同系统的输出如图11-4所示(参见封面二)。运行我们自编的sock程序(附录C),发送一份包含9个字节数据的UDP数据报给标准回显服务器。
从这里可以看出,三个系统中有两个打开了UDP检验和选项。
还要注意的是,在这个简单例子中,送出的数据报与收到的数据报具有相同的检验和值(第3和第4行,第5和第6行)。从图11-3可以看出,两个IP地址进行了交换,正如两个端口号一样。伪首部和UDP首部中的其他字段都是相同的,就像数据回显一样。这再次表明UDP检验和(事实上,TCP/IP协议簇中所有的检验和)是简单的16 bit和。它们检测不出交换两个16 bit的差错。
11.3.2 一些统计结果
文献[Mogul 1992]提供了在一个繁忙的NFS服务器上所发生的不同检验和差错的统计结果,时间持续了40天。统计数字结果如图11-5所示。
最后一列是每一行的大概总数,因为太网和IP层还使用其他的协议。例如,不是所有的以太网数据帧都是IP数据报,至少以太网还要使用ARP协议。不是所有的IP数据报都是UDP或TCP数据,因为ICMP也用IP传送数据。
注意,TCP发生检验和差错的比例与UDP相比要高得多。这很可能是因为在该系统中的TCP连接经常是“远程”连接(经过许多路由器和网桥等中间设备),而UDP一般为本地通信。
从最后一行可以看出,不要完全相信数据链路(如以太网,令牌环等)的CRC检验。应该始终打开端到端的检验和功能。而且,如果你的数据很有价值,也不要完全相信UDP或TCP的检验和,因为这些都只是简单的检验和,不能检测出所有可能发生的差错。
11.4 一个简单的例子
用我们自己编写的sock程序生成一些可以通过tcpdump观察的UDP数据报:
第1次执行这个程序时,我们指定verbose模式(-v)来观察ephemeral端口号,指定UDP(-u)而不是默认的TCP,并且指定源模式(-i)来发送数据,而不是读写标准的输入和输出。-n4选项指明输出4份数据报(默认条件下为1024),目的主机为svr4。在1.12节描述了丢弃服务。每次写操作的输出长度取默认值1024。
第2次运行该程序时我们指定-w0,意思是写长度为0的数据报。两个命令的tcpdump输出结果如图11-6所示。
输出显示有四份1024字节的数据报,接着有四份长度为0的数据报。每份数据报间隔几毫秒(输入第2个命令花了41秒的时间)。
在发送第1份数据报之前,发送端和接收端之间没有任何通信(在第17章,我们将看到TCP在发送数据的第1个字节之前必须与另一端建立连接)。另外,当收到数据时,接收端没有任何确认。在这个例子中,发送端并不知道另一端是否已经收到这些数据报。
最后要指出的是,每次运行程序时,源端的UDP端口号都发生变化。第一次是1108,然后是1110。在1.9节我们已经提过,客户程序使用ephemeral端口号一般在1024~5000之间,正如我们现在看到的这样。