Prometheus接入AlterManager配置邮件告警(基于K8S环境部署)

文章目录

    • 一、配置AlterManager告警发送至邮箱
    • 二、Prometheus接入AlterManager配置
    • 三、部署Prometheus+AlterManager(放到一个Pod中)
    • 四、测试告警

注意:请基于 Prometheus+Grafana监控K8S集群(基于K8S环境部署)文章之上做本次实验。

一、配置AlterManager告警发送至邮箱

1、创建AlterManager ConfigMap资源清单

vim alertmanager-cm.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:name: alertmanagernamespace: prometheus
data:alertmanager.yml: |-global:  resolve_timeout: 1msmtp_smarthost: 'smtp.qq.com:25'smtp_from: '1507341994@qq.com'  # 从这个邮箱发送告警smtp_auth_username: '1507341994@qq.com'  # 发送告警邮箱账号smtp_auth_password: 'eptesvmdjfpcbaab'   # 邮箱验证码,用自己的别用我的!!smtp_require_tls: falseroute:   # 路由配置(将邮箱发送那个路由)group_by: [alertname]group_wait: 10sgroup_interval: 10srepeat_interval: 10mreceiver: default-receiver   # 告警发送到default-receiver接受者receivers:- name: 'default-receiver'     # 定义default-receiver接受者email_configs:- to: '1507341994@qq.com'   # 告警发送邮箱地址send_resolved: true

执行YAML资源清单:

kubectl apply -f alertmanager-cm.yaml

2、配置文件核心配置说明

  • group_by: [alertname]:采用哪个标签来作为分组依据。
  • group_wait:10s:组告警等待时间。就是告警产生后等待10s,如果有同组告警一起发出。
  • group_interval: 10s :上下两组发送告警的间隔时间。
  • repeat_interval: 10m:重复发送告警的时间,减少相同邮件的发送频率,默认是1h。
  • receiver: default-receiver:定义谁来收告警。
  • smtp_smarthost: SMTP服务器地址+端口。
  • smtp_from:指定从哪个邮箱发送报警。
  • smtp_auth_username:邮箱账号。
  • smtp_auth_password: 邮箱密码(授权码)。

二、Prometheus接入AlterManager配置

1、创建新的Prometheus ConfigMap资源清单,添加监控K8S集群告警规则

vim prometheus-alertmanager-cfg.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: prometheus
data:prometheus.yml: |rule_files: - /etc/prometheus/rules.yml   # 告警规则位置alerting:alertmanagers:- static_configs:- targets: ["localhost:9093"] # 接入AlterManagerglobal:scrape_interval: 15sscrape_timeout: 10sevaluation_interval: 1mscrape_configs:- job_name: 'kubernetes-node'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace- action: labelmapregex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'kubernetes_sd_configs:- role:  nodescheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- action: labelmapregex: __meta_kubernetes_node_label_(.+)- target_label: __address__replacement: kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name]regex: (.+)target_label: __metrics_path__replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpointsscheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]action: keepregex: default;kubernetes;https- job_name: 'kubernetes-service-endpoints'kubernetes_sd_configs:- role: endpointsrelabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2- action: labelmapregex: __meta_kubernetes_service_label_(.+)- source_labels: [__meta_kubernetes_namespace]action: replacetarget_label: kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]action: replacetarget_label: kubernetes_name - job_name: 'kubernetes-pods'    # 监控Pod配置,添加注解后才可以被发现kubernetes_sd_configs:- role: podrelabel_configs:- action: keepregex: truesource_labels:- __meta_kubernetes_pod_annotation_prometheus_io_scrape- action: replaceregex: (.+)source_labels:- __meta_kubernetes_pod_annotation_prometheus_io_pathtarget_label: __metrics_path__- action: replaceregex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2source_labels:- __address__- __meta_kubernetes_pod_annotation_prometheus_io_porttarget_label: __address__- action: labelmapregex: __meta_kubernetes_pod_label_(.+)- action: replacesource_labels:- __meta_kubernetes_namespacetarget_label: kubernetes_namespace- action: replacesource_labels:- __meta_kubernetes_pod_nametarget_label: kubernetes_pod_name- job_name: 'kubernetes-etcd'   # 监控etcd配置scheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crtcert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crtkey_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.keyscrape_interval: 5sstatic_configs:- targets: ['16.32.15.200:2379']rules.yml: |  # K8S集群告警规则配置文件groups:- name: examplerules:- alert: apiserver的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  apiserver的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: etcd的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert:  etcd的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: kube-state-metrics的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"      - alert: kube-state-metrics的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"      - alert: coredns的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%"      - alert: coredns的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%"      - alert: kube-proxy打开句柄数>600expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kube-proxy打开句柄数>1000expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>600expr: process_open_fds{job=~"kubernetes-schedule"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>1000expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>600expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>1000expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>600expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>1000expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>600expr: process_open_fds{job=~"kubernetes-etcd"}  > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>1000expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 600for: 2slabels:severity: warnning annotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"}  > 1000for: 2slabels:severity: criticalannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"value: "{{ $value }}"- alert: kube-proxyexpr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: schedulerexpr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-controller-managerexpr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-apiserverexpr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-etcdexpr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kube-dnsexpr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000for: 2slabels:severity: warnningannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: HttpRequestsAvgexpr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"value: "{{ $value }}"threshold: "1000"   - alert: Pod_restartsexpr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0for: 2slabels:severity: warnningannotations:description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"value: "{{ $value }}"threshold: "0"- alert: Pod_waitingexpr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"value: "{{ $value }}"threshold: "1"   - alert: Pod_terminatedexpr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"value: "{{ $value }}"threshold: "1"- alert: Etcd_leaderexpr: etcd_server_has_leader{job="kubernetes-etcd"} == 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"value: "{{ $value }}"threshold: "0"- alert: Etcd_leader_changesexpr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"value: "{{ $value }}"threshold: "0"- alert: Etcd_failedexpr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"value: "{{ $value }}"threshold: "0"- alert: Etcd_db_total_sizeexpr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"value: "{{ $value }}"threshold: "10G"- alert: Endpoint_readyexpr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"value: "{{ $value }}"threshold: "1"- name: 物理节点状态-监控告警rules:- alert: 物理节点cpu使用率expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90for: 2slabels:severity: ccriticalannotations:summary: "{{ $labels.instance }}cpu使用率过高"description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: 物理节点内存使用率expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90for: 2slabels:severity: criticalannotations:summary: "{{ $labels.instance }}内存使用率过高"description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"- alert: InstanceDownexpr: up == 0for: 2slabels:severity: criticalannotations:   summary: "{{ $labels.instance }}: 服务器宕机"description: "{{ $labels.instance }}: 服务器延时超过2分钟"- alert: 物理节点磁盘的IO性能expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"- alert: 入网流量带宽expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入网络带宽过高!"description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: 出网流量带宽expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流出网络带宽过高!"description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: TCP会话expr: node_netstat_Tcp_CurrEstab > 1000for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"- alert: 磁盘容量expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"

执行资源清单:

kubectl apply -f prometheus-alertmanager-cfg.yaml

2、由于在prometheus中新增了etcd,所以生成一个etcd-certs,这个在部署prometheus需要

kubectl -n prometheus create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt

三、部署Prometheus+AlterManager(放到一个Pod中)

1、在node-1节点创建/data/alertmanager目录,存放alertmanager数据

mkdir /data/alertmanager -p
chmod -R 777 alertmanager

2、创建deployment资源

vim prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-servernamespace: prometheuslabels:app: prometheus
spec:replicas: 1selector:matchLabels:app: prometheuscomponent: server#matchExpressions:#- {key: app, operator: In, values: [prometheus]}#- {key: component, operator: In, values: [server]}template:metadata:labels:app: prometheuscomponent: serverannotations:prometheus.io/scrape: 'false'spec:nodeName: node-1 # 调度到node-1节点serviceAccountName: prometheus # 指定sa服务账号containers:- name: prometheusimage: prom/prometheus:v2.33.5imagePullPolicy: IfNotPresentcommand:- "/bin/prometheus"args:- "--config.file=/etc/prometheus/prometheus.yml"- "--storage.tsdb.path=/prometheus"- "--storage.tsdb.retention=24h"- "--web.enable-lifecycle"ports:- containerPort: 9090protocol: TCPvolumeMounts:- mountPath: /etc/prometheusname: prometheus-config- mountPath: /prometheus/name: prometheus-storage-volume- name: k8s-certsmountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/- name: alertmanager#image: prom/alertmanager:v0.14.0image: prom/alertmanager:v0.23.0imagePullPolicy: IfNotPresentargs:- "--config.file=/etc/alertmanager/alertmanager.yml"- "--log.level=debug"ports:- containerPort: 9093protocol: TCPname: alertmanagervolumeMounts:- name: alertmanager-configmountPath: /etc/alertmanager- name: alertmanager-storagemountPath: /alertmanager- name: localtimemountPath: /etc/localtimevolumes:- name: prometheus-configconfigMap:name: prometheus-config- name: prometheus-storage-volumehostPath:path: /datatype: Directory- name: k8s-certssecret:secretName: etcd-certs- name: alertmanager-configconfigMap:name: alertmanager- name: alertmanager-storagehostPath:path: /data/alertmanagertype: DirectoryOrCreate- name: localtimehostPath:path: /usr/share/zoneinfo/Asia/Shanghai

执行YAML资源清单:

kubectl apply -f prometheus-alertmanager-deploy.yaml

查看状态:

kubectl get pods -n prometheus

在这里插入图片描述

2、创建AlterManager SVC资源

vim alertmanager-svc.yaml 
---
apiVersion: v1
kind: Service
metadata:labels:name: prometheuskubernetes.io/cluster-service: 'true'name: alertmanagernamespace: prometheus
spec:ports:- name: alertmanagernodePort: 30066port: 9093protocol: TCPtargetPort: 9093selector:app: prometheussessionAffinity: Nonetype: NodePort

执行YAML资源清单:

kubectl apply -f alertmanager-svc.yaml 

查看状态:

kubectl get svc -n prometheus

在这里插入图片描述

四、测试告警

浏览器访问:http://IP:30066
在这里插入图片描述
如上图可以看到,Prometheus的告警信息已经发到AlterManager了,AlertManager收到报警数据后,会将警报信息进行分组,然后根据AlertManager配置的 group_wait 时间先进行等待。等wait时间过后再发送报警信息至邮件!

如上图,告警信息已经成功发往邮件了!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/115643.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++——特殊类设计

目录 一.不能被拷贝的类 1.C98做法 2.C11做法 二.只能在堆上实例化的类 1.实现方式一 2.实现方式二 三.只能在栈上创建的对象 四.不能被继承的类 1.C98方式 2.C11方式 五.只能创建一个对象的类 1.设计模式 2.单例模式 一.不能被拷贝的类 拷贝只会放在两个场景中&a…

visual studio Qt 开发环境中手动添加 Q_OBJECT 导致编译时出错的问题

问题简述 创建项目的时候&#xff0c;已经添加了类文件&#xff0c;前期认为不需要信号槽&#xff0c;就没有添加宏Q_OBJECT,后面项目需要&#xff0c;又加入了宏Q_OBJECT&#xff0c;但是发现只是添加了一个宏Q_OBJECT&#xff0c;除此之外没有改动其它的代码&#xff0c;原本…

基于springboot实现地方废物回收机构平台管理系统【项目源码+论文说明】

基于springboot实现地方废物回收机构管理系统演示 摘要 网络的广泛应用给生活带来了十分的便利。所以把地方废物回收机构管理与现在网络相结合&#xff0c;利用java技术建设地方废物回收机构管理系统&#xff0c;实现地方废物回收机构的信息化。则对于进一步提高地方废物回收机…

如何提高广告投放转化率?Share Creators 资产库与Appsflyer营销数据的全面结合

如何提高广告投放转化率&#xff1f;Share Creators 资产库与Appsflyer营销数据的全面结合 全球经济进入了低迷期。 营销成本越来越高&#xff0c; 营销需要更务实&#xff0c;注重投入产出比。众所周知&#xff0c;除了渠道、客群画像以外&#xff0c; 优秀的广告设计图&#…

c进阶测试题

选择题 1.请问该程序的输出是多少&#xff08;C&#xff09; #include<stdio.h> int main(){unsigned char i 7;int j 0;for(;i > 0;i - 3){ j;} printf("%d\n", j);return 0; }A. 2 B. 死循环 C. 173 D. 172 首先unsigned char型是不会为负数&#xff…

flask入门(四)前后端数据传输

文章目录 1、flask后端接收来自前端的数据1&#xff09;如果前端提交的方法为POST2&#xff09;如果前段提交的方法是GET 2、flask后端向前端传数据3、案例参考文献 1、flask后端接收来自前端的数据 1&#xff09;如果前端提交的方法为POST 后端接收时的代码&#xff1a; xx…

pojo之vo_dto_po的一些理解

一次扫盲VO、DTO、DO和PO区别、用法、概念~-腾讯云开发者社区-腾讯云 (tencent.com) Java学习笔记——实体类&#xff08;ENTITY&#xff0c;VO&#xff0c;DTO&#xff0c;BO&#xff09;_dto继承entity_路言汐的博客-CSDN博客 说清楚PO、DTO、VO、BO与使用场景_业务逻辑层p…

nvm 常用命令

记录一下常使用的nvm命令&#xff0c;希望对大家也有所帮助&#xff01;&#xff01;&#xff01; nvm 帮助 nvm --help 版本查询 nvm -v 查看可用node版本 nvm list 下载最新node nvm install node 使用v21.0.0版本的node nvm use v21.0.0 切换node默认版本 nvm alias …

我试图扯掉这条 SQL 的底裤。只能扯一点点,不能扯多了

之前不是写分页嘛,分页肯定就要说到 limit 关键字嘛。 然后我啪的一下扔了一个链接出来: https://dev.mysql.com/doc/refman/8.0/en/limit-optimization.html 这个链接就是 MySQL 官方文档,这一章节叫做“对 Limit 查询的优化”,针对 limit 和 order by 组合的场景进行了较…

【MySQL】存储引擎

存储引擎 查看存储引擎设置表的存储引擎创建表时指定存储引擎修改表的存储引擎 引擎介绍InnoDB引擎: 具备外键支持的十五存储引擎MyISAM引擎: 主要的非事务处理存储引擎Archive引擎: 用于数据存档Blackhole引擎: 丢弃写操作,读操作返回空内容CSV引擎: 读取数据时,以逗号分隔各个…

软件设计原则-依赖倒置原则讲解以及代码示例

依赖倒置原则 一&#xff0c;介绍 1.前言 依赖倒置原则&#xff08;Dependency Inversion Principle&#xff0c;DIP&#xff09;是面向对象设计中的一个重要原则&#xff0c;由Robert C. Martin提出。 依赖倒置原则的核心思想是&#xff1a;高层模块不应该依赖于低层模块&…

aiohttp ssl.SSLError: [SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] 错误处理

这个问题原因吧其实就是3.10 开始官网更新了TLS 堆栈默认安全设置 感兴趣的可以看下链接 python官网叙述: Python 3.10 增加了 TLS 堆栈的默认安全设置 解决也很简单&#xff0c;将ssl安全等级降下来就行&#xff0c;例如&#xff1a; import ssl import aiohttp ctx ssl.cr…

Redis 底层对 String 的 3 个优化

Redis对 String 类型实现了很多优化&#xff0c;通过以下三个重要的优化点来解释&#xff1a; 1. 简单动态字符串&#xff08;SDS&#xff09; Redis 的 String 类型内部采用简单动态字符串&#xff08;SDS&#xff09;来管理字符串。相比于 C 语言的原生字符串&#xff0c;S…

二、【MyBatis】 MyBatis入门与简单使用

二、【MyBatis】 MyBatis入门与简单使用 二、【MyBatis】 MyBatis入门与简单使用一、什么是ORM二、为什么mybatis是半自动的ORM框架2.1 Hibernate优点2.2 Hibernate缺点2.3 MyBatis与Hibernate区别三、Mybatis快速入门3.1 项目引入Maven相关依赖3.2 创建测试数据库3.3 编写数据…

sealos一键部署K8S环境(sealos3.0时代教程过时了,目前已经4.0了,请移步使用Sealos一键安装K8S)

1 安装Sealos(4.0版本) sealos部署k8s贼方便&#xff0c;只需要一条init命令即可&#xff0c;3分钟部署完&#xff08;下载安装包的时间不算&#xff09;。 官方教程&#xff1a;https://www.sealyun.com/instructions/1st #主机名&#xff1a; hostnamectl set-hostname mas…

PROSTATEx-2 上前列腺癌的 3D CNN 分类

内容 本文介绍了在多参数 MRI 序列上使用 3D CNN 对前列腺癌进行显着性或不显着性分类。内容如下: 数据集描述Dicom 到 Nifti 文件格式的转换不同 MRI 序列的联合配准

redis底层数据结构

总所周知&#xff0c;redis支持五种数据类型String、Hash、List、Set、ZSet。在支持这些复杂数据结构的同时&#xff0c;redis不仅需要保证读写的性能&#xff0c;还能提供各种微操作&#xff0c;比如直接修改Hash字典中的某个field的值&#xff0c;或者直接往ZSet中插入某个值…

【人工智能Ⅰ】2-知识表示

【人工智能Ⅰ】2-知识表示 知识是智能的基础 一阶谓词逻辑、产生式、框架等知识表示方法 文章目录 【人工智能Ⅰ】2-知识表示2.1 知识与知识表示的概念知识的概念知识的特性 2.2 一阶谓词逻辑表示法谓词谓词公式一阶谓词逻辑知识表示方法一阶谓词逻辑表示法的特点 2.3 产生式…

Failed to start The nginx HTTP and reverse proxy server.

本章教程主要分享一下&#xff0c;当nginx 启动时&#xff0c;遇到报这个错误时的一个解决问题思路。 目录 1、观察报错信息 2、尝试性解决 1、观察报错信息 根据日志的信息&#xff0c;我们至少可以知道2个比较信息。 1、操作用户执行命令是在非root权限下进行操作的。 2、Ad…

Xcode14创建github远程仓库Token

1.点击Create a Token on GitHub 2.在打开的网页中,登陆GitHub 3.点击生成Token 这是不能为空 4.Token创建成功如下: 5.复制Token到Xcode然后点击Sign In登陆 正在创建远程我仓库 正在将本地仓库代码推入远程仓库 创建成功