【Mysql】B+树索引的使用(七)

前言

每个索引都对应一棵 B+ 树, B+ 树分为多层,最下边一层是叶子节点,其余的是内节点(非叶子节点)。所有用户记录都存储在 B+ 树的叶子节点,所有目录项记录都存储在内节点。
InnoDB 存储引擎会自动为主键(如果没有它会自动帮我们添加)建立聚簇索引 ,聚簇索引的叶子节点包含完整的用户记录。同时为满足查询需求我们也可以为所需列建立二级索引 , 二级索引的叶子节点包含的用户记录由 索引列 + 主键组成,所以如果想通过二级索引来查找完整的用户记录的话,需要通过回表 操作,也就是在通过 二级索引找到主键值之后再到聚簇索引中查找完整的用户记录。
B+ 树中每层节点都是按照索引列值从小到大的顺序排序而组成了双向链表,而且每个页内的记录(不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序而形成了一个单链表。如果是联合索引的话,则页面和记录先按照联合索引前边的列排序,如果该列值相同,再按照联合索引 后边的列排序。通过索引查找记录是从 B+ 树的根节点开始,一层一层向下搜索。由于每个页面都按照索引列的值建立了Page Directory (页目录),所以在这些页面中的查找非常快。

索引的代价

在熟悉了 B+ 树索引原理之后,我们知道虽然索引是个好东西,但是也不能乱建,因为它在空间和时间上都会有一定的代价:

  • 空间上的代价
    这个是很容易理解的,每建立一个索引都要为它建立一棵 B+ 树,每一棵 B+ 树的每一个节点都是一个数据页,一个页默认会占用 16KB 的存储空间,一棵很大的 B+ 树由许多数据页(很多页)组成,会占用很大一片存储空间。
  • 时间上的代价
    每次对表中的数据进行增、删、改操作时,都需要去修改各个 B+ 树索引。而且我们讲过, B+ 树每层节点都是按照索引列的值从小到大的顺序排序而组成了双向链表。不论是叶子节点中的记录,还是内节点中的记录(也就是不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序而形成了一个单向链表。而增、删、改操作可能会对节点和记录的排序造成破坏,所以存储引擎需要额外的时间进行一些记录移位,页面分裂、页面回收等操作来维护好节点和记录的排序。如果我们建了许多索引,每个索引对应的 B+ 树都要进行相关的维护操作,性能就会下降。所以说,一个表上索引建的越多,就会占用越多的存储空间,在增删改记录的时候性能就越差。为了能建立又好又少的索引,我们先得学学这些索引在哪些条件下起作用的。

B+树索引适用的条件

下边将介绍多种可以让B+树索引发挥最大效能的技巧和注意事项,不过大家要清楚,所有的技巧都是源自你对 B+ 树索引本质的理解。首先, B+ 树索引并不是万能的,并不是所有的查询语句都能用
到我们建立的索引。下边介绍几个我们可能使用 B+ 树索引来进行查询的情况。为了测试需要先创建一个表,这个表是用来存储人的一些基本信息的:

mysql> CREATE TABLE person_info( id INT NOT NULL auto_increment, name VARCHAR(100) NOT NULL, birthday DATE NOT NULL, phone_number CHAR(11) NOT NULL, country varchar(100) NOT NULL, PRIMARY KEY (id), KEY idx_name_birthday_phone_number (name, birthday, phone_number) );
Query OK, 0 rows affected (0.20 sec)

对于这个 person_info 表我们需要注意两点:

  • 表中的主键是 id 列,它存储一个自动递增的整数。所以 InnoDB 存储引擎会自动为 id 列建立聚簇索引。
  • 我们额外定义了一个二级索引 idx_name_birthday_phone_number ,它是由3个列组成的联合索引。所以在这个索引对应的 B+ 树的叶子节点处存储的用户记录只保留 name 、birthday 、phone_number 这三个列的值以及主键 id 的值,并不会保存 country 列的值。
    从上这两点注意中我们可以看到,一个表中有多少索引就会建立多少棵 B+ 树, person_info 表会为聚簇索引和 idx_name_birthday_phone_number 索引建立2棵 B+ 树。下边是索引
    idx_name_birthday_phone_number 的示意图,让图更加清晰,所以省略了一些不必要的部分,比如记录的额外信息,各页面的页号等等,其中内节点中目录项记录的页号信息我们用箭头来代替,在记录结构中只保留 name 、 birthday 、 phone_number 、id 这四个列的真实数据值,所以最后的示意图如下:
    在这里插入图片描述
    从图中也可以看到,内节点(非叶子节点)中存储的是目录项记录 ,叶子节点中存储的是用户记录 (由于不是聚簇索引,所以用户记录是不完整的,缺少 country 列的值)。从图中可以看出,这个 idx_name_birthday_phone_number 索引对应的 B+ 树中页面和记录的排序方式就是这样的:
  • 先按照 name 列的值进行排序。
  • 如果 name 列的值相同,则按照 birthday 列的值进行排序。
  • 如果 birthday 列的值也相同,则按照 phone_number 的值进行排序。
    这种排序方式十分重要,因为只要页面和记录是排好序的,我们就可以通过二分法来快速定位查找。

全值匹配

如果我们的搜索条件中的列和索引列一致的话,这种情况就称为全值匹配,比如说下边这个查找语句:
SELECT * FROM person_info WHERE name = ‘Ashburn’ AND birthday = ‘1990-09-27’ AND phone_number = ‘15123983239’;
我们建立的 idx_name_birthday_phone_number 索引包含的3个列在这个查询语句中都展现出来了。大家可以想象一下这个查询过程:

  • 因为 B+ 树的数据页和记录先是按照 name 列的值进行排序的,所以先可以很快定位 name 列的值是 Ashburn的记录位置。
  • 在 name 列相同的记录里又是按照 birthday 列的值进行排序的,所以在 name 列的值是 Ashburn 的记录里又可以快速定位 birthday 列的值是 ‘1990-09-27’ 的记录。
  • 如果很不幸, name 和 birthday 列的值都是相同的,那记录是按照 phone_number 列的值排序的,所以联合索引中的三个列都可能被用到,因为值都不一定是唯一的。
    WHERE子句中的多个搜索条件的顺序对查询结果有影响么?也就是说如果我们调换name 、birthday 、 phone_number 这几个搜索列的顺序对查询的执行过程有影响么?比如说写成下边这样:
    SELECT * FROM person_info WHERE birthday = ‘1990-09-27’ AND name = ‘Ashburn’ AND phone_number =‘15123983239’ ;
    答案是:没影响。 因为MySQL 有一个查询优化器,会分析这些搜索条件并且按照可以使用的索引中列的顺序来决定先使用哪个搜索条件,后使用哪个搜索条件。

匹配左边的列

其实在我们的搜索语句中也可以不用包含全部联合索引中的列,只包含左边的就行,比如说下边的查询语句:
SELECT * FROM person_info WHERE name = ‘Ashburn’;
或者包含多个左边的列也行:
SELECT * FROM person_info WHERE name = ‘Ashburn’ AND birthday = ‘1990-09-27’;
那为什么搜索条件中必须出现左边的列才可以使用到这个 B+ 树索引呢?比如下边的语句就用不到这个 B+ 树索引
SELECT * FROM person_info WHERE birthday = ‘1990-09-27’;
确实用不到,因为 B+ 树的数据页和记录先是按照 name 列的值排序的,在name列的值相同的情况下才使用 birthday 列进行排序,也就是说 name 列的值不同的记录中 birthday的值可能是无序的。而现在跳过name 列直接根据 birthday 的值去查找,就不能使用这个索引。那如果我就想在只使用birthday的值去通过 B+ 树索引进行查找咋办呢?只需要再对 birthday 列建一个 B+ 树索引就解决了。
但是需要特别注意的一点是,如果我们想使用联合索引中尽可能多的列,搜索条件中的各个列必须是联合索引中从最左边连续的列。比如说联合索引 idx_name_birthday_phone_number 中列的定义顺序是 name 、birthday 、 phone_number ,如果我们的搜索条件中只有 name 和 phone_number ,而没有中间的 birthday ,比如:SELECT * FROM person_info WHERE name = ‘Ashburn’ AND phone_number = ‘15123983239’;这样只能用到 name 列的索引, birthday 和 phone_number 的索引就用不上了,因为name值相同的记录先按照birthday 的值进行排序, birthday 值相同的记录才按照 phone_number值进行排序。

匹配列前缀

我们前边说过为某个列建立索引的意思其实就是在对应的 B+ 树的记录中使用该列的值进行排序,比如说person_info 表上建立的联合索引 idx_name_birthday_phone_number 会先用 name 列的值进行排序,然后birthday,然后phone_number。
字符串排序的本质就是比较哪个字符串大一点儿,哪个字符串小一点,比较字符串大小就用到了该列的字符集和比较规则。需要注意的是,一般的比较规则都是逐个比较字符的大小,也就是说我们比较两个字符串的大小的过程其实是这样的:

  • 先比较字符串的第一个字符,第一个字符小的那个字符串就比较小。
  • 如果两个字符串的第一个字符相同,那就再比较第二个字符,第二个字符比较小的那个字符串就比较小。
  • 如果两个字符串的第二个字符也相同,那就接着比较第三个字符,依此类推。
    所以一个排好序的字符串列其实有这样的特点:
  • 先按照字符串的第一个字符进行排序。
  • 如果第一个字符相同再按照第二个字符进行排序。
  • 如果第二个字符相同再按照第三个字符进行排序,依此类推。
    也就是说这些字符串的前n个字符,也就是前缀都是排好序的,所以对于字符串类型的索引列来说,我们只匹配它的前缀也是可以快速定位记录的,比如说我们想查询名字以 ‘As’ 开头的记录,那就可以这么写查询语句:
    SELECT * FROM person_info WHERE name LIKE ‘As%’;
    但是需要注意的是,如果只给出后缀或者中间的某个字符串,比如这样:
    SELECT * FROM person_info WHERE name LIKE ‘%As%’;
    MySQL 就无法快速定位记录位置了,因为字符串中间有 ‘As’ 的字符串并没有排好序,所以只能全表扫描了。有时候我们有一些匹配某些字符串后缀的需求,比如说某个表有一个 url 列,该列中存储了许多url:
    在这里插入图片描述
    假设已经对该 url 列创建了索引,如果我们想查询以 com 为后缀的网址的话可以这样写查询条件: WHERE url LIKE ‘%com’ ,但是这样的话无法使用该 url 列的索引。为了在查询时用到这个索引而不至于全表扫描,我们可以把后缀查询改写成前缀查询,不过我们就需要把表中的数据全部逆序存储一下,也就是说我们可以这样保存 url列中的数据:
    在这里插入图片描述
    这样再查找以 com 为后缀的网址时搜索条件便可以这么写: WHERE url LIKE ‘moc%’ ,这样就可以用到索引了。

匹配范围值

对于 idx_name_birthday_phone_number 索引的 B+ 树示意图,所有记录都是按照索引列的值从小到大的顺序排好序的,所以这极大的方便我们查找索引列的值在某个范围内的记录。比如说下边这个查询语句:
SELECT * FROM person_info WHERE name > ‘Asa’ AND name < ‘Barlow’;
由于 B+ 树中的数据页和记录是先按 name 列排序的,所以我们上边的查询过程其实是这样的:

  • 找到 name 值为 Asa 的记录。
  • 找到 name 值为 Barlow 的记录。
  • 由于所有记录都是由链表连起来的(记录之间用单链表,数据页之间用双链表),所以他们之间的记录都可以很容易的取出来
  • 找到这些记录的主键值,再到聚簇索引中回表查找完整的记录。
    不过在使用联合进行范围查找的时候需要注意,如果对多个列同时进行范围查找的话,只有对索引最左边的那个列进行范围查找的时候才能用到 B+ 树索引,比如说这样:
    SELECT * FROM person_info WHERE name > ‘Asa’ AND name < ‘Barlow’ AND birthday > ‘1980-01-01’;
    上边这个查询可以分成两个部分:
    1 . 通过条件 name > ‘Asa’ AND name < ‘Barlow’ 来对 name 进行范围,查找的结果可能有多条 name 值不同的记录,
    2 . 对这些 name 值不同的记录继续通过 birthday > ‘1980-01-01’ 条件继续过滤。
    这样子对于联合索引 idx_name_birthday_phone_number 来说,只能用到 name 列的部分,而用不到birthday 列的部分,因为只有 name 值相同的情况下才能用 birthday 列的值进行排序,而这个查询中通过 name 进行范围查找的记录中可能并不是按照 birthday 列进行排序的,所以在搜索条件中继续以 birthday 列进行查找时是用不到这个 B+ 树索引的。

精确匹配某一列并范围匹配另外一列

对于同一个联合索引来说,虽然对多个列都进行范围查找时只能用到最左边那个索引列,但是如果左边的列是精确查找,则右边的列可以进行范围查找,比如:
SELECT * FROM person_info WHERE name = ‘Ashburn’ AND birthday > ‘1980-01-01’ AND birthday
< ‘2000-12-31’ AND phone_number > ‘15100000000’;
这个查询的条件可以分为3个部分:
1 . name = ‘Ashburn’ ,对 name 列进行精确查找,当然可以使用 B+ 树索引了。
2 . birthday > ‘1980-01-01’ AND birthday < ‘2000-12-31’ ,由于 name 列是精确查找,所以通过 name =‘Ashburn’ 条件查找后得到的结果的 name 值都是相同的,它们会再按照 birthday 的值进行排序。所以此时对 birthday 列进行范围查找是可以用到 B+ 树索引的。
3 . phone_number > ‘15100000000’ ,通过 birthday 的范围查找的记录的 birthday 的值可能不同,所以这个条件无法再利用 B+ 树索引了,只能遍历上一步查询得到的记录。
同理,下边的查询也是可能用到这个 idx_name_birthday_phone_number 联合索引的:
SELECT * FROM person_info WHERE name = ‘Ashburn’ AND birthday = ‘1980-01-01’ AND AND phone_number > ‘15100000000’;

用于排序

我们在写查询语句的时候经常需要对查询出来的记录通过ORDER BY子句按照某种规则进行排序。一般情况下,我们只能把记录都加载到内存中,再用一些排序算法,比如快速排序、归并排序、等等在内存中对这些记录进行排序,有的时候可能查询的结果集太大以至于不能在内存中进行排序的话,还可能暂时借助磁盘的空间来存放中间结果,排序操作完成后再把排好序的结果集返回到客户端。在 MySQL 中,把这种在内存中或者磁盘上进行排序的方式统称为文件排序(英文名: filesort ),跟 文件这个词儿一沾边儿,就显得这些排序操作非常慢了。但是如果 ORDER BY 子句里使用到了我们的
索引列,就有可能省去在内存或文件中排序的步骤,比如下边这个简单的查询语句:
SELECT * FROM person_info ORDER BY name, birthday, phone_number LIMIT 10;
这个查询的结果集需要先按照 name 值排序,如果记录的 name 值相同,则需要按照 birthday 来排序,如果
birthday 的值相同,则需要按照 phone_number 排序。大家可以回过头去看我们建立的
idx_name_birthday_phone_number 索引的示意图,因为这个 B+ 树索引本身就是按照上述规则排好序的,所以直接从索引中提取数据,然后进行回表操作取出该索引中不包含的列就可以了。

使用联合索引进行排序注意事项

对于联合索引有个问题需要注意, ORDER BY 的子句后边的列的顺序也必须按照索引列的顺序给出,如果给出ORDER BY phone_number, birthday, name 的顺序,那也是用不了 B+ 树索引,这种颠倒顺序就不能使用索引的原因和上面的一样。
同理,ORDER BY name 、ORDER BY name, birthday 这种匹配索引左边的列的形式可以使用部分的 B+ 树索引。当联合索引左边列的值为常量,也可以使用后边的列进行排序,比如这样:
SELECT * FROM person_info WHERE name = ‘A’ ORDER BY birthday, phone_number LIMIT 10;
这个查询能使用联合索引进行排序是因为 name 列的值相同的记录是按照 birthday , phone_number 排序的。

不可以使用索引进行排序的几种情况

ASC、DESC混用
对于使用联合索引进行排序的场景,我们要求各个排序列的排序顺序是一致的,也就是要么各个列都是 ASC 规则排序,要么都是DESC规则排序。
小贴士:
ORDER BY子句后的列如果不加ASC或者DESC默认是按照ASC排序规则排序的,也就是升序排序的。
这个原因还得回头想想这个 idx_name_birthday_phone_number 联合索引中记录的结构:

  • 先按照记录的 name 列的值进行升序排列。
  • 如果记录的 name 列的值相同,再按照 birthday 列的值进行升序排列。
  • 如果记录的 birthday 列的值相同,再按照 phone_number 列的值进行升序排列。

如果查询中的各个排序列的排序顺序是一致的,比如说下边这两种情况:

  • ORDER BY name, birthday LIMIT 10
    这种情况直接从索引的最左边开始往右读10行记录就可以了。
  • ORDER BY name DESC, birthday DESC LIMIT 10 ,
    这种情况直接从索引的最右边开始往左读10行记录就可以了。

但是如果我们查询的需求是先按照 name 列进行升序排列,再按照 birthday 列进行降序排列的话,比如如这样的查询语句:
SELECT * FROM person_info ORDER BY name, birthday DESC LIMIT 10;
这样如果使用索引排序的话过程就是这样的:

  • 先从索引的最左边确定 name 列最小的值,然后找到 name 列等于该值的所有记录,然后从 name 列等于该值的最右边的那条记录开始往左找10条记录。
  • 如果 name 列等于最小的值的记录不足10条,再继续往右找 name 值第二小的记录,重复上边那个过程,直到找到10条记录为止。

这样来回查找不能高效使用索引,而要采取更复杂的算法去从索引中取数据,这样还不如直接文件排序来的快,所以就规定使用联合索引的各个排序列的排序顺序必须是一致的。

WHERE子句中出现非排序使用到的索引列

如果WHERE子句中出现了非排序使用到的索引列,那么排序依然是使用不到索引的,比如:*
SELECT * FROM person_info WHERE country = ‘China’ ORDER BY name LIMIT 10;
country这个列没有建立索引,这个查询只能先把符合搜索条件 country = ‘China’ 的记录提取出来后再进行排序,是使用不到索引。

注意和下边这个查询作区别:
SELECT * FROM person_info WHERE name = ‘A’ ORDER BY birthday, phone_number LIMIT 10;
虽然这个查询也有搜索条件,但是 name = ‘A’ 可以使用到索引 idx_name_birthday_phone_number ,而且过滤剩下的记录还是按照 birthday 、 phone_number 列排序的,所以还是可以使用索引进行排序的。

排序列包含非同一个索引的列

有时候用来排序的多个列不是一个索引里的,这种情况也不能使用索引进行排序,比如说:
SELECT * FROM person_info ORDER BY name, country LIMIT 10;
name 和 country 并不属于一个联合索引中的列,所以无法使用索引进行排序。

排序列使用了复杂的表达式

要想使用索引进行排序操作,必须保证索引列是以单独列的形式出现,而不是修饰过的形式,比如说这样:
SELECT * FROM person_info ORDER BY UPPER(name) LIMIT 10;
使用了 UPPER 函数修饰过的列就不是单独的列啦,这样就无法使用索引进行排序啦。

用于分组

有时候我们为了方便统计表中的一些信息,会把表中的记录按照某些列进行分组。比如下边这个分组查询:
SELECT name, birthday, phone_number, COUNT(*) FROM person_info GROUP BY name, birthday, phone_number;
这个查询语句相当于做了3次分组操作:
1 . 先把记录按照 name 值进行分组,所有 name 值相同的记录划分为一组。
2 . 将每个 name 值相同的分组里的记录再按照 birthday 的值进行分组,将 birthday 值相同的记录放到一个小分组里,所以看起来就像在一个大分组里又化分了好多小分组。
3 . 再将上一步中产生的小分组按照 phone_number 的值分成更小的分组,所以整体上看起来就像是先把记录分成一个大分组,然后把大分组分成若干个小分组 ,然后把若干个小分组再细分成更多的 小小分组 。
然后针对那些 小小分组进行统计,比如在我们这个查询语句中就是统计每个小小分组 包含的记录条数。如果没有索引的话,这个分组过程全部需要在内存里实现,而如果有了索引的话,恰巧这个分组顺序又和我们的 B+ 树中的索引列的顺序是一致的,而我们的 B+ 树索引又是按照索引列排好序的,这不正好么,所以可以直接使用B+ 树索引进行分组。

和使用 B+ 树索引进行排序是一个道理,分组列的顺序也需要和索引列的顺序一致,也可以只使用索引列中左边的列进行分组。

回表的代价

上面我们说过,不管说二级索引还是联合索引,叶子节点中有可能没有包括我们需要的数据,此时我们就需要通过主键重新去聚簇索引中获取我们需要的数据,这个过程就称之为回表。以idx_name_birthday_phone_number 索引为例,看下边这个查询:
SELECT * FROM person_info WHERE name > ‘Asa’ AND name < ‘Barlow’;
在使用 idx_name_birthday_phone_number 索引进行查询时大致可以分为这两个步骤:

  1. 从索引 idx_name_birthday_phone_number 对应的 B+ 树中取出 name 值在 Asa ~ Barlow 之间的用户记录。
  2. 由于索引 idx_name_birthday_phone_number 对应的 B+ 树用户记录中只包含 name 、 birthday 、phone_number 、 id 这4个字段,而查询列表是 * ,意味着要查询表中所有字段,也就是还要包括 country 字段。这时需要把从上一步中获取到的每一条记录的 id 字段都到聚簇索引对应的 B+ 树中找到完整的用户记录 ,然后把完整的用户记录返回给查询用户。

由于索引 idx_name_birthday_phone_number 对应的 B+ 树中的记录首先会按照 name 列的值进行排序,所以值在 Asa ~ Barlow 之间的记录在磁盘中的存储是相连的,集中分布在一个或几个数据页中,我们可以很快的把这 些连着的记录从磁盘中读出来,这种读取方式我们也可以称为 顺序I/O 。根据第1步中获取到的记录的 id 字段 的值可能并不相连,而在聚簇索引中记录是根据 id (也就是主键)的顺序排列的,所以根据这些并不连续的 id 值到聚簇索引中访问完整的用户记录可能分布在不同的数据页中,这样读取完整的用户记录可能要访问更多的数据页,这种读取方式我们也可以称为随机I/O 。一般情况下,顺序I/O比随机I/O的性能高很多,所以步骤1的执行可能很快,而步骤2就慢一些。所以这个使用索引 idx_name_birthday_phone_number 的查询有这么两个特点:

  • 会使用到两个 B+ 树索引,一个二级索引,一个聚簇索引。
  • 访问二级索引使用顺序I/O (速度快),访问聚簇索引使用随机I/O(速度慢) 。

需要回表的记录越多,使用二级索引的性能就越低,甚至让某些查询宁愿使用全表扫描也不使用二级索引 。比如说 name 值在 Asa ~ Barlow 之间的用户记录数量占全部记录数量90%以上,那么如果使用idx_name_birthday_phone_number 索引的话,有90%多的 id 值需要回表,那还不如直接去 扫描聚簇索引(也就是全表扫描)。

那什么时候采用全表扫描的方式,什么时候使用采用二级索引+回表的方式去执行查询呢?这个就是查询优化器做的工作,查询优化器会事先对表中的记录计算一些统计数据,然后再利用这些统计数据根据查询的条件来计算一下需要回表的记录数,需要回表的记录数越多,就越倾向于使用全表扫描,反之倾向于使用二级索引+回表的方式。当然优化器做的分析工作不仅仅是这么简单,但是大致上是个这个过程。一般情况下,限制查询获取较少的记录数会让优化器更倾向于选择用二级索引+回表 的方式进行查询,因为回表的记录越少, 性能提升就越高,比如说上边的查询可以改写成这样:
SELECT * FROM person_info WHERE name > ‘Asa’ AND name < ‘Barlow’ LIMIT 10;

添加了 LIMIT 10 的查询更容易让优化器采用 二级索引+回表的方式进行查询。
对于有排序需求的查询,上边讨论的采用全表扫描还是二级索引+回表的方式进行查询的条件也是成立的, 比如说下边这个查询:
SELECT * FROM person_info ORDER BY name, birthday, phone_number;
由于查询列表是 * ,所以如果使用二级索引进行排序的话,需要把排序完的二级索引记录全部进行回表操作,这样操作的成本还不如直接遍历聚簇索引然后再进行文件排序( filesort )低,所以优化器会倾向于使用全表扫描的方式执行查询。如果我们加了 LIMIT 子句,比如这样:
SELECT * FROM person_info ORDER BY name, birthday, phone_number LIMIT 10;
这样需要回表的记录特别少,优化器就会倾向于使用 二级索引 + 回表 的方式执行查询。

覆盖索引

为了不使用回表操作带来的性能损耗,我们建议:最好在查询列表里只包含索引列,比如这样:
SELECT name, birthday, phone_number FROM person_info WHERE name > ‘Asa’ AND name < ‘Barlow’
因为我们只查询 name , birthday , phone_number 这三个索引列的值,所以在通过 idx_name_birthday_phone_number 这个二级索引就能得到结果而不必到聚簇索引中再查找记录的剩余列,也就是country 列的值了,这样就省去了回表操作带来的性能损耗。我们把这种只需要用到索引的查询方式称为索引覆盖 。排序操作也优先使用覆盖索引的方式进行查询,比如说这个查询:
SELECT name, birthday, phone_number FROM person_info ORDER BY name, birthday, phone_number;
虽然这个查询中没有 LIMIT 子句,但是采用了覆盖索引 ,所以查询优化器就会直接使用
idx_name_birthday_phone_number 索引进行排序而不需要回表操作。 当然,如果业务需要查询出索引以外的列,那还是以保证业务需求为重。但是我们很不提倡用 * 号作为查询列表,最好把我们需要查询的列依次标明。

如何挑选索引

上边我们以 idx_name_birthday_phone_number 索引为例对索引的适用条件进行了详细的唠叨,下边看一下我们在建立索引时或者编写查询语句时就应该注意的一些事项。

只为用于搜索、排序或分组的列创建索引

也就是说,只为出现在WHERE子句中的列、连接子句中的连接列,或者出现在 ORDER BY 或 GROUP BY 子句中的列创建索引。而出现在查询列表中的列就没必要建立索引了:
SELECT birthday, country FROM person name WHERE name = ‘Ashburn’;
像查询列表中的 birthday 、 country 这两个列就不需要建立索引,我们只需要为出现在 WHERE 子句中的 name 列创建索引就可以了。

考虑列的基数

列的基数指的是某一列中不重复数据的个数,比如说某个列包含值 2, 5, 8, 2, 5, 8, 2, 5, 8 ,虽然有9 条记录,但该列的基数却是 3 。也就是说,在记录行数一定的情况下,列的基数越大,该列中的值越分散,列的基数越小,该列中的值越集中。这个列的基数指标非常重要,直接影响我们是否能有效的利用索引。假设某个列的基数为 1 ,也就是所有记录在该列中的值都一样,那为该列建立索引是没有用的,因为所有值都一样就无法排 序,无法进行快速查找了~ 而且如果某个建立了二级索引的列的重复值特别多,那么使用这个二级索引查出的记 录还可能要做回表操作,这样性能损耗就更大了。所以结论就是:最好为那些列的基数大的列建立索引,为基数太小列的建立索引效果可能不好。

索引列的类型尽量小

我们在定义表结构的时候要显式的指定列的类型,以整数类型为例,有TINYINT、MEDIUMINT 、INT 、 BIGINT这么几种,它们占用的存储空间依次递增,我们这里所说的类型大小指的就是该类型表示的数据范围的大小。 能表示的整数范围当然也是依次递增,如果我们想要对某个整数列建立索引的话,在表示的整数范围允许的情况 下,尽量让索引列使用较小的类型,比如我们能使用 INT 就不要使用 BIGINT ,能使用 MEDIUMINT 就不要使用INT,这是因为:

  • 数据类型越小,在查询时进行的比较操作越快(这是CPU层次的东东) 数据类型越小,索引占用的存储空间就越少,在一个数据页内就可以放下更多的记录,从而减少磁盘 I/O 带来的性能损耗,也就意味着可以把更多的数据页缓存在内存中,从而加快读写效率。
    这个建议对于表的主键来说更加适用,因为不仅是聚簇索引中会存储主键值,其他所有的二级索引的节点处都会存储一份记录的主键值,如果主键适用更小的数据类型,也就意味着节省更多的存储空间和更高效的 I/O 。

索引字符串值的前缀

我们知道一个字符串其实是由若干个字符组成,如果我们在 MySQL 中使用 utf8 字符集去存储字符串的话,编码 一个字符需要占用 1~3 个字节。假设我们的字符串很长,那存储一个字符串就需要占用很大的存储空间。在我们需要为这个字符串列建立索引时,那就意味着在对应的 B+ 树中有这么两个问题:

  • B+ 树索引中的记录需要把该列的完整字符串存储起来,而且字符串越长,在索引中占用的存储空间越大。
  • 如果 B+ 树索引中索引列存储的字符串很长,那在做字符串比较时会占用更多的时间。

我们前边儿说过索引列的字符串前缀其实也是排好序的,所以索引的设计者提出了一个方案: 只对字符串的前几个字符进行索引也就是说在二级索引的记录中只保留字符串前几个字符。这样在查找记录时虽然不能精确的定位到记录的位置,但是能定位到相应前缀所在的位置,然后根据前缀相同的记录的主键值回表查询完整的字符串值,再对比就好了。这样只在 B+ 树中存储字符串的前几个字符的编码,既节约空间,又减少了字符串的比较时间,还大概能解决排序的问题,比如说我们在建表语句中只对 name 列的前10个字符进行索引可以这么写:
CREATE TABLE person_info(
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
name(10) 就表示在建立的 B+ 树索引中只保留记录的前 10 个字符的编码,这种只索引字符串值的前缀的策略是我们非常提倡的,尤其是在字符串类型能存储的字符比较多的时候。

索引列前缀对排序的影响

如果使用了索引列前缀,比如说前边只把 name 列的前10个字符放到了二级索引中,下边这个查询可能就有点儿尴尬了:
SELECT * FROM person_info ORDER BY name LIMIT 10;
因为二级索引中不包含完整的 name 列信息,所以无法对前十个字符相同,后边的字符不同的记录进行排序,也就是使用索引列前缀的方式无法支持使用索引排序,只好乖乖的用文件排序进行查找。

让索引列在比较表达式中单独出现

假设表中有一个整数列 my_col ,我们为这个列建立了索引。下边的两个 WHERE 子句虽然语义是一致的,但是在效率上却有差别:

  • WHERE my_col * 2 < 4
  • WHERE my_col < 4/2

第1个 WHERE 子句中 my_col 列并不是以单独列的形式出现的,而是以 my_col * 2 这样的表达式的形式出现的, 存储引擎会依次遍历所有的记录,计算这个表达式的值是不是小于 4 ,所以这种情况下是使用不到为 my_col 列 建立的 B+ 树索引的。而第2个 WHERE 子句中 my_col 列并是以单独列的形式出现的,这样的情况可以直接使用B+ 树索引。
所以结论就是:如果索引列在比较表达式中不是以单独列的形式出现,而是以某个表达式,或者函数调用形式出现的话,是用不到索引的。

主键插入顺序

我们知道,对于一个使用 InnoDB 存储引擎的表来说,在我们没有显式的创建索引时,表中的数据实际上都是存储在聚簇索引的叶子节点的。而记录又是存储在数据页中的,数据页和记录又是按照记录主键值从小到大的顺序进行排序,所以如果我们插入的记录的主键值是依次增大的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的主键值忽大忽小的话,这就比较麻烦了,假设某个数据页存储的记录已经满了,它存储的主键值在 1~100 之间:
在这里插入图片描述
如果此时由于需要再插入一条主键值为 9 的记录,那它插入的位置就如下图:
在这里插入图片描述
可这个数据页已经满了,再插进来咋办呢?我们需要把当前页面分裂成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着:性能损耗!所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的主键值依次递增,这样就不会发生这样的性能损耗了。所以我们建议:让主键具 有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入 ,比如说我们可以这样定义
person_info 表:
CREATE TABLE person_info(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。

冗余和重复索引

有时候无意间对同一个列创建了多个索引,比如说这样写建表语句:
CREATE TABLE person_info(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number),
KEY idx_name (name(10))
);
我们知道,通过 idx_name_birthday_phone_number 索引就可以对 name 列进行快速搜索,再创建一个专门针对 name 列的索引就算是一个冗余索引,维护这个索引只会增加维护的成本,并不会对搜索有什么好处。
另一种情况,我们可能会对某个列重复建立索引,比如说这样:
CREATE TABLE repeat_index_demo (
c1 INT PRIMARY KEY,
c2 INT,
UNIQUE uidx_c1 (c1),
INDEX idx_c1 (c1)
);
我们看到, c1 既是主键、又给它定义为一个唯一索引,还给它定义了一个普通索引,可是主键本身就会生成聚簇索引,所以定义的唯一索引和普通索引都是重复的,这种情况要避免。

更多关于mysql的知识分享,请前往博客主页。编写过程中,难免出现差错,敬请指出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/114612.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Node学习笔记之包管理工具

一、概念介绍 1.1 包是什么 『包』英文单词是package &#xff0c;代表了一组特定功能的源码集合 1.2 包管理工具 管理『包』的应用软件&#xff0c;可以对「包」进行 下载安装 &#xff0c; 更新 &#xff0c; 删除 &#xff0c; 上传 等操作 借助包管理工具&#xff0c;可…

推理引擎之模型压缩浅析

目录 前言1. 模型压缩架构和流程介绍2. 低比特量化原理2.1 量化基础介绍2.2 量化方法2.3 量化算法原理2.4 讨论 3. 感知量化训练QAT原理3.1 QAT原理3.2 量化算子插入3.3 QAT训练流程3.4 QAT衍生研究3.5 讨论 4. 训练后量化PTQ4.1 动态PTQ4.2 静态PTQ4.3 KL散度实现静态PTQ4.4 量…

最详细STM32,cubeMX 定时器

这篇文章将详细介绍 STM32,cubeMX 定时器的配置和使用。 文章目录 前言一、定时器基础知识二、cubeMX 配置三、定时时长四、自动生成代码讲解五、实验程序总结 前言 实验开发板&#xff1a;STM32F103C8T6。所需软件&#xff1a;keil5 &#xff0c; cubeMX 。实验目的&#xff…

无人机UAV目标检测与跟踪(代码+数据)

前言 近年来&#xff0c;随着无人机的自主性、灵活性和广泛的应用领域&#xff0c;它们在广泛的消费通讯和网络领域迅速发展。无人机应用提供了可能的民用和公共领域应用&#xff0c;其中可以使用单个或多个无人机。与此同时&#xff0c;我们也需要意识到无人机侵入对空域安全…

牛客:NC59 矩阵的最小路径和

牛客&#xff1a;NC59 矩阵的最小路径和 文章目录 牛客&#xff1a;NC59 矩阵的最小路径和题目描述题解思路题解代码 题目描述 题解思路 动态规划&#xff0c;递推公式&#xff1a;matrix[i][j] min(matrix[i-1][j], matrix[i][j-1]) 题解代码 func minPathSum( matrix [][…

【数据科学赛】2023全球智能汽车AI挑战赛 #¥95000 #LLM文档问答 #视频理解

CompHub[1] 最新的比赛会第一时间在群里通知&#xff0c;欢迎加群交流比赛经验&#xff01;&#xff08;公众号回复“加群”即可&#xff09; 以下内容由AI辅助生成&#xff0c;可能存在错误&#xff0c;可进入比赛主页[2]查看更多(文末阅读原文) 比赛主办方 吉利汽车集团、阿…

【C++】:类和对象(中)之拷贝构造函数+赋值运算符重载

拷贝构造函数 概念 在现实生活中&#xff0c;可能存在一个与你一样的自己&#xff0c;我们称其为双胞胎 那在创建对象时&#xff0c;可否创建一个与已存在对象一某一样的新对象呢&#xff1f; 拷贝构造函数&#xff1a;只有单个形参&#xff0c;该形参是对本类类型对象的引用…

FPGA的斐波那契数列Fibonacci设计verilog,代码和视频

名称&#xff1a;斐波那契数列Fibonacci设计verilog 软件&#xff1a;Quartus 语言&#xff1a;Verilog 代码功能&#xff1a; 设计一个产生斐波那契数列&#xff08;也叫黄金分割数列&#xff09;的硬件电路: 斐波那契数列中每个数为其相邻前两个数的和:即FNFN1FN2,(数列…

Python:函数篇(每周练习)

编程题&#xff1a; Python第四章作业&#xff08;初级&#xff09; (educoder.net) 题一&#xff1a;无参无返回值函数 def print_hi_human(): # 函数名用小写字母print("人类&#xff0c;你好&#xff01;")if __name__ __main__:print_hi_human() 题二&#…

设计模式篇---组合模式

文章目录 概念结构实例总结 概念 组合模式&#xff1a;组合多个对象形成树形结构以表示具有部分-整体关系的层次结构。组合模式让客户端可以统一对待单个对象和组合对象。 当我们开发中遇到树形结构的业务时&#xff0c;可以考虑使用组合模式。&#xff08;我也没有想明白为啥…

Mysql数据库 2.SQL语言 数据类型与字段约束

Mysql数据类型 数据类型&#xff1a;指的是数据表中的列文件支持存放的数据类型 1.数值类型 Mysql当中有多种数据类型可以存放数值&#xff0c;不同的类型存放的数值的范围或者形式是不同的 注&#xff1a;前三种数字类型我们在实际研发中用的很少&#xff0c;一般整数类型…

空中计算(Over-the-Air Computation)学习笔记

文章目录 写在前面 写在前面 本文是论文A Survey on Over-the-Air Computation的阅读笔记&#xff1a; 通信和计算通常被视为独立的任务。 从工程的角度来看&#xff0c;这种方法是非常有效的&#xff0c;因为可以执行孤立的优化。 然而&#xff0c;对于许多面向计算的应用程序…

游戏反虚拟框架检测方案

游戏风险环境&#xff0c;是指独立于原有设备或破坏设备原有系统的环境。常见的游戏风险环境有&#xff1a;iOS越狱、安卓设备root、虚拟机、虚拟框架、云手机等。 因为这类风险环境可以为游戏外挂、破解提供所需的高级别设备权限&#xff0c;所以当游戏处于这些设备环境下&am…

ARM可用的可信固件项目简介

安全之安全(security)博客目录导读 目录 一、TrustedFirmware-A (TF-A) 二、MCUboot 三、TrustedFirmware-M (TF-M) 四、TF-RMM 五、OP-TEE 六、Mbed TLS 七、Hafnium 八、Trusted Services 九、Open CI 可信固件为Armv8-A、Armv9-A和Armv8-M提供了安全软件的参考实现…

【UE5】 ListView使用DataTable数据的蓝图方法

【UE5】 ListView使用DataTable数据的蓝图方法 ListView 是虚幻引擎中的一种用户界面控件&#xff0c;用于显示可滚动的列表。它可以用于显示大量的数据&#xff0c;并提供了各种功能和自定义选项来满足不同的需求。 DataTable是虚幻引擎中的一种数据表格结构&#xff0c;用于存…

Vue Router - 路由的使用、两种切换方式、两种传参方式、嵌套方式

目录 一、Vue Router 1.1、下载 1.2、基本使用 a&#xff09;引入 vue-router.js&#xff08;注意&#xff1a;要在 Vue.js 之后引入&#xff09;. b&#xff09;创建好路由规则 c&#xff09;注册到 Vue 实例中 d&#xff09;展示路由组件 1.3、切换路由的两种方式 1.…

ubuntu20.04 nvidia显卡驱动掉了,变成开源驱动,在软件与更新里选择专有驱动,下载出错,调整ubuntu镜像源之后成功修复

驱动配置好&#xff0c;环境隔了一段时间&#xff0c;打开Ubuntu发现装好的驱动又掉了&#xff0c;软件与更新 那里&#xff0c;附加驱动&#xff0c;显示开源驱动&#xff0c;命令行输入 nvidia-smi 命令查找不到驱动。 点击上面的 nvidia-driver-470&#xff08;专有&#x…

wps excel js编程

定义全局变量 const a "dota" function test() {Debug.Print(a) }获取表格中单元格内容 function test() {Debug.Print("第一行第二列",Cells(1,2).Text)Debug.Print("A1:",Range("A1").Text) }写单元格 Range("C1").Val…

【面试经典150 | 栈】有效的括号

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;栈哈希表 其他语言cpython3 写在最后 Tag 【栈】 题目来源 20. 有效的括号 题目解读 括号有三种类型&#xff0c;分别是小括号、中括号和大括号&#xff0c;每种括号的左右两半括号必须一一对应才是有效的括号&#…

JetBrains系列IDE全家桶激活

jetbrains全家桶 正版授权&#xff0c;这里有账号授权的渠道&#xff1a; https://www.mano100.cn/thread-1942-1-1.html 附加授权后的一张图片