大规模语言LLaVA:多模态GPT-4智能助手,融合语言与视觉,满足用户复杂需求

大规模语言LLaVA:多模态GPT-4智能助手,融合语言与视觉,满足用户复杂需求

一个面向多模式GPT-4级别能力构建的助手。它结合了自然语言处理和计算机视觉,为用户提供了强大的多模式交互和理解。LLaVA旨在更深入地理解和处理语言和视觉信息,从而实现更复杂的任务和对话。这个项目代表了下一代智能助手的发展方向,它能够更好地理解和应对用户需求。

  • 效果展示

demo链接:https://llava.hliu.cc/

当我来这里旅游时,我应该注意哪些事情?

在平静的湖面上游览码头时,有几件事你应该小心。首先,要注意天气状况,因为图像显示的是多云的天空。这可能表明天气突然变化的可能性,如下雨或强风,这可能使码头湿滑或不安全。其次,要注意水深和水位突然变化的可能性,因为码头位于湖中。最后,要小心任何可能出现在该地区的野生动物或昆虫,因为它们可能会对你的安全或健康构成威胁。为了确保安全愉快的体验,保持警惕和尊重环境是必不可少的。

  • 主流大模型之间对比

1.安装

  1. Clone this repository and navigate to LLaVA folder
git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA
  1. Install Package
conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip  # enable PEP 660 support
pip install -e .
  1. Install additional packages for training cases
pip install ninja
pip install flash-attn --no-build-isolation

1.1 升级到最新的代码库

git pull
pip uninstall transformers
pip install -e .

2.LLaVA 权重

Please check out our Model Zoo for all public LLaVA checkpoints, and the instructions of how to use the weights.

2.1 Demo

To run our demo, you need to prepare LLaVA checkpoints locally. Please follow the instructions here to download the checkpoints.

2.2 基于Gradio Web UI

要在本地启动Gradio demo,请依次运行以下命令。如果你计划启动多个模型工作者来比较不同的检查点,你只需要启动控制器和web服务器一次

  • Launch a controller
python -m llava.serve.controller --host 0.0.0.0 --port 10000
  • Launch a gradio web server.
python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload

您刚刚启动了grado web界面。现在,您可以打开带有打印在屏幕上的URL的web界面。您可能会注意到在模型列表中没有模型。别担心,我们还没有推出劳模。当你启动一个模型工作者时,它将被自动更新。

  • Launch a model worker

This is the actual worker that performs the inference on the GPU. Each worker is responsible for a single model specified in --model-path.

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b

Wait until the process finishes loading the model and you see “Uvicorn running on …”. Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.

You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the --controller the same, and modify the --port and --worker to a different port number for each worker.

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>

If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the --device flag: --device mps.

  • Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB)

如果GPU的VRAM小于24GB(例如,RTX 3090, RTX 4090等),您可以尝试在多个GPU上运行它。如果您有多个GPU,我们最新的代码库将自动尝试使用多个GPU。你可以使用’ CUDA_VISIBLE_DEVICES '来指定使用哪个gpu。下面是使用前两个gpu运行的示例。

CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
  • Launch a model worker (4-bit, 8-bit inference, quantized)

您可以使用量化位(4位,8位)启动模型工作器,这允许您在减少GPU内存占用的情况下运行推理,可能允许您在只有12GB VRAM的GPU上运行。请注意,使用量子化位的推理可能不如全精度模型准确。只需将’——load-4bit ‘或’——load-8bit '附加到您正在执行的model worker命令。下面是一个使用4位量化运行的示例。

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit
  • Launch a model worker (LoRA weights, unmerged)

您可以使用LoRA权重启动模型工作器,而不将它们与基本检查点合并,以节省磁盘空间。会有额外的加载时间,而推理速度与合并的检查点相同。未合并的LoRA检查点在模型名称中没有“LoRA -merge”,并且通常比合并的检查点小得多(小于1GB) (7B为13G, 13B为25G)。

要加载未合并的LoRA权重,您只需要传递一个额外的参数’——model-base ',这是用于训练LoRA权重的基本LLM。您可以在模型动物园中查看每个LoRA权重的基本LLM。

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3 --model-base lmsys/vicuna-13b-v1.3

3.CLI 推理

使用LLaVA讨论图像,而不需要使用Gradio接口。支持多gpu、4位和8位量化推理。使用4位量化,对于我们的LLaVA-1.5-7B,它在单个GPU上使用不到8GB的VRAM。

python -m llava.serve.cli \--model-path liuhaotian/llava-v1.5-7b \--image-file "https://llava-vl.github.io/static/images/view.jpg" \--load-4bit

4.模型训练

以下是LLaVA v1.5的最新培训配置。对于遗留模型,请参考此版本的README。稍后我们将把它们添加到一个单独的文档中

LLaVA训练包括两个阶段:(1)特征对齐阶段:使用LAION-CC-SBU数据集的558K子集将“冻结预训练”视觉编码器连接到“冻结LLM”;(2)视觉指令调整阶段:使用150K gpt生成的多模态指令跟随数据,加上515K左右的学术任务VQA数据,来教模型遵循多模态指令。

LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the per_device_train_batch_size and increase the gradient_accumulation_steps accordingly. Always keep the global batch size the same: per_device_train_batch_size x gradient_accumulation_steps x num_gpus.

4.1 超参数

We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.

  1. Pretraining
HyperparameterGlobal Batch SizeLearning rateEpochsMax lengthWeight decay
LLaVA-v1.5-13B2561e-3120480
  1. Finetuning
HyperparameterGlobal Batch SizeLearning rateEpochsMax lengthWeight decay
LLaVA-v1.5-13B1282e-5120480

4.2 下载 Vicuna checkpoints (automatically)

我们的基本模型Vicuna v1.5,这是一个指令调整聊天机器人,将自动下载,当你运行我们提供的训练脚本。不需要任何操作。

4.3 预训练 (特征对齐)

请下载我们在论文中使用的带有BLIP标题的LAION-CC-SBU数据集的558K子集在这里。

在8x A100 (80G)上,由于分辨率增加到336px, LLaVA-v1.5-13B的预训练大约需要5.5小时。LLaVA-v1.5-7B大约需要3.5小时。

Training script with DeepSpeed ZeRO-2: pretrain.sh.

  • --mm_projector_type mlp2x_gelu: the two-layer MLP vision-language connector.
  • --vision_tower openai/clip-vit-large-patch14-336: CLIP ViT-L/14 336px.

4.4 可视化训练调试

  1. Prepare data

Please download the annotation of the final mixture our instruction tuning data llava_v1_5_mix665k.json, and download the images from constituting datasets:

  • COCO: train2017
  • GQA: images
  • OCR-VQA: download script
  • TextVQA: train_val_images
  • VisualGenome: part1, part2

After downloading all of them, organize the data as follows in ./playground/data,

├── coco
│   └── train2017
├── gqa
│   └── images
├── ocr_vqa
│   └── images
├── textvqa
│   └── train_images
└── vg├── VG_100K└── VG_100K_2
  1. Start training!

You may download our pretrained projectors in Model Zoo. It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.

Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).

Training script with DeepSpeed ZeRO-3: finetune.sh.

New options to note:

  • --mm_projector_type mlp2x_gelu: the two-layer MLP vision-language connector.
  • --vision_tower openai/clip-vit-large-patch14-336: CLIP ViT-L/14 336px.
  • --image_aspect_ratio pad: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.
  • --group_by_modality_length True: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.

5.模型评估

In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.

See Evaluation.md.

5.1 基于GPT协助的评估

我们的gpt辅助的多模态建模评估管道提供了对视觉语言模型能力的全面理解。详情请参阅我们的文章。

  1. Generate LLaVA responses
python model_vqa.py \--model-path ./checkpoints/LLaVA-13B-v0 \--question-file \playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \--image-folder \/path/to/coco2014_val \--answers-file \/path/to/answer-file-our.jsonl
  1. Evaluate the generated responses. In our case, answer-file-ref.jsonl is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.
OPENAI_API_KEY="sk-***********************************" python llava/eval/eval_gpt_review_visual.py \--question playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \--context llava/eval/table/caps_boxes_coco2014_val_80.jsonl \--answer-list \/path/to/answer-file-ref.jsonl \/path/to/answer-file-our.jsonl \--rule llava/eval/table/rule.json \--output /path/to/review.json
  1. Summarize the evaluation results
python summarize_gpt_review.py

6.模型合集

要使用llava -1.5检查点,您的llava软件包版本必须高于1.1.0。说明如何升级。

如果您有兴趣在模型动物园中加入任何其他细节,请打开一个问题:)

下面的模型权重是合并的权重。你不需要应用。LLaVA检查点的使用应该符合基本LLM的模型许可:Llama 2。

LLaVA-v1.5

VersionSizeScheduleCheckpointVQAv2GQAVizWizSQAT-VQAPOPEMMEMM-BenchMM-Bench-CNSEEDLLaVA-Bench-WildMM-Vet
LLaVA-1.57Bfull_ft-1eliuhaotian/llava-v1.5-7b78.562.050.066.858.285.91510.764.358.358.665.431.1
LLaVA-1.513Bfull_ft-1eliuhaotian/llava-v1.5-13b80.063.353.671.661.385.91531.367.763.661.672.536.1
LLaVA-1.57Blora-1ecoming soon
LLaVA-1.513Blora-1ecoming soon

LLaVA-v1

Note: We recommend using the most capable LLaVA-v1.5 series above for the best performance.

Base LLMVision EncoderPretrain DataPretraining scheduleFinetuning DataFinetuning scheduleLLaVA-Bench-ConvLLaVA-Bench-DetailLLaVA-Bench-ComplexLLaVA-Bench-OverallDownload
Vicuna-13B-v1.3CLIP-L-336pxLCS-558K1eLLaVA-Instruct-80Kproj-1e, lora-1e64.355.981.770.1LoRA LoRA-Merged
LLaMA-2-13B-ChatCLIP-LLCS-558K1eLLaVA-Instruct-80Kfull_ft-1e56.758.680.067.9ckpt
LLaMA-2-7B-ChatCLIP-LLCS-558K1eLLaVA-Instruct-80Klora-1e51.258.971.662.8LoRA

Projector weights

These are projector weights we have pretrained. You can use these projector weights for visual instruction tuning. They are just pretrained on image-text pairs, and are NOT instruction tuned, which means they do NOT follow instructions as good as our official models, and can output repetitive, lengthy, and garbled outputs. If you want to have nice conversations with LLaVA, use the checkpoints above (LLaVA v1.5).

NOTE: These projector weights are only compatible with the llava>=1.0.0, please check out the latest code base if your local code version is below v1.0.0.

NOTE: When you use our pretrained projector for visual instruction tuning, it is very important to use the same base LLM and vision encoder as the one we used for pretraining the projector. Otherwise, the performance will be very bad.

When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows,

--mm_use_im_start_end False
--mm_use_im_patch_token False
Base LLMVision EncoderProjectionPretrain DataPretraining scheduleDownload
Vicuna-13B-v1.5CLIP-L-336pxMLP-2xLCS-558K1eprojector
Vicuna-7B-v1.5CLIP-L-336pxMLP-2xLCS-558K1eprojector
LLaMA-2-13B-ChatCLIP-L-336pxLinearLCS-558K1eprojector
LLaMA-2-7B-ChatCLIP-L-336pxLinearLCS-558K1eprojector
LLaMA-2-13B-ChatCLIP-LLinearLCS-558K1eprojector
LLaMA-2-7B-ChatCLIP-LLinearLCS-558K1eprojector
Vicuna-13B-v1.3CLIP-L-336pxLinearLCS-558K1eprojector
Vicuna-7B-v1.3CLIP-L-336pxLinearLCS-558K1eprojector
Vicuna-13B-v1.3CLIP-LLinearLCS-558K1eprojector
Vicuna-7B-v1.3CLIP-LLinearLCS-558K1eprojector

Science QA Checkpoints

Base LLMVision EncoderPretrain DataPretraining scheduleFinetuning DataFinetuning scheduleDownload
Vicuna-13B-v1.3CLIP-LLCS-558K1eScienceQAfull_ft-12eckpt

Legacy Models (merged weights)

The model weights below are merged weights. You do not need to apply delta. The usage of LLaVA checkpoints should comply with the base LLM’s model license.

Base LLMVision EncoderPretrain DataPretraining scheduleFinetuning DataFinetuning scheduleDownload
MPT-7B-ChatCLIP-LLCS-558K1eLLaVA-Instruct-80Kfull_ft-1epreview

Legacy Models (delta weights)

The model weights below are delta weights. The usage of LLaVA checkpoints should comply with the base LLM’s model license: LLaMA.

You can add our delta to the original LLaMA weights to obtain the LLaVA weights.

Instructions:

  1. Get the original LLaMA weights in the huggingface format by following the instructions here.
  2. Use the following scripts to get LLaVA weights by applying our delta. It will automatically download delta weights from our Hugging Face account. In the script below, we use the delta weights of liuhaotian/LLaVA-7b-delta-v0 as an example. It can be adapted for other delta weights by changing the --delta argument (and base/target accordingly).
python3 -m llava.model.apply_delta \--base /path/to/llama-7b \--target /output/path/to/LLaVA-7B-v0 \--delta liuhaotian/LLaVA-7b-delta-v0
Base LLMVision EncoderPretrain DataPretraining scheduleFinetuning DataFinetuning scheduleDownload
Vicuna-13B-v1.1CLIP-LCC-595K1eLLaVA-Instruct-158Kfull_ft-3edelta-weights
Vicuna-7B-v1.1CLIP-LLCS-558K1eLLaVA-Instruct-80Kfull_ft-1edelta-weights
Vicuna-13B-v0CLIP-LCC-595K1eLLaVA-Instruct-158Kfull_ft-3edelta-weights
Vicuna-13B-v0CLIP-LCC-595K1eScienceQAfull_ft-12edelta-weights
Vicuna-7B-v0CLIP-LCC-595K1eLLaVA-Instruct-158Kfull_ft-3edelta-weights

Legacy Projector weights

The following projector weights are deprecated, and the support for them may be removed in the future. They do not support zero-shot inference. Please use the projector weights in the table above if possible.

NOTE: When you use our pretrained projector for visual instruction tuning, it is very important to use the same base LLM and vision encoder as the one we used for pretraining the projector. Otherwise, the performance will be very bad.

When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows,

--mm_use_im_start_end True
--mm_use_im_patch_token False
Base LLMVision EncoderPretrain DataPretraining scheduleDownload
Vicuna-7B-v1.1CLIP-LLCS-558K1eprojector
Vicuna-13B-v0CLIP-LCC-595K1eprojector
Vicuna-7B-v0CLIP-LCC-595K1eprojector

When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows,

--mm_use_im_start_end False
--mm_use_im_patch_token False
Base LLMVision EncoderPretrain DataPretraining scheduleDownload
Vicuna-13B-v0CLIP-LCC-595K1eprojector

7.数据集介绍

Data file nameSize
llava_instruct_150k.json229 MB
llava_instruct_80k.json229 MB
conversation_58k.json126 MB
detail_23k.json20.5 MB
complex_reasoning_77k.json79.6 MB

7.1 Pretraining Dataset

The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see here for a detailed description of the dataset structure and how to download the images.

If you already have CC-3M dataset on your disk, the image names follow this format: GCC_train_000000000.jpg. You may edit the image field correspondingly if necessary.

DataChat FileMeta DataSize
CC-3M Concept-balanced 595Kchat.jsonmetadata.json211 MB
LAION/CC/SBU BLIP-Caption Concept-balanced 558Kblip_laion_cc_sbu_558k.jsonmetadata.json181 MB

Important notice: Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload images.zip for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.

7.2 GPT-4 Prompts

我们为GPT-4查询提供提示和少量样本,以更好地促进该领域的研究。请查看’ prompts '文件夹中的三种问题:对话、细节描述和复杂推理。

它们以’ system_message.txt ‘的格式组织,用于系统消息,’ abc_caps.txt ‘对用于少数几个示例用户输入,’ abc_conf .txt '用于少数几个示例参考输出。

请注意,它们的格式可能不同。例如,’ conversation ‘在’ json '中,详细描述是只回答的。我们在初步实验中选择的格式比我们尝试的一组有限的替代方案稍微好一些:“json”,更自然的格式,只有答案。如果有兴趣,您可以尝试其他变体或对此进行更仔细的研究。欢迎投稿!

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/113827.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理---Transformer机制详解之Decoder详解

1 Decoder端的输入解析 1.1 Decoder端的架构 Transformer原始论文中的Decoder模块是由N6个相同的Decoder Block堆叠而成&#xff0c;其中每一个Block是由3个子模块构成&#xff0c;分别是多头self-attention模块&#xff0c;Encoder-Decoder attention模块&#xff0c;前馈全…

web前端基础CSS------美化页面“footer”部分

一&#xff0c;实验代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>关于我们</title><style type"text/css">#footer{margin: 10px 0px;background: #f5f5f5;border: top 1px solid #eee ;}#f…

redis 缓存雪崩 缓存击穿 缓存穿透

目录 redis 缓存雪崩 && 缓存击穿 && 缓存穿透 什么是缓存雪崩 缓存雪崩的成因如何预防缓存雪崩什么是缓存穿透&#xff1f; 导致缓存穿透的原因缓解缓存穿透的方法什么是缓存击穿&#xff1f; 缓存穿透与缓存击穿的区别缓存击穿的原因解决缓存击穿问题文章转自…

NET7下用WebSocket做简易聊天室

NET7下用WebSocket做简易聊天室 步骤&#xff1a; 建立NET7的MVC视图模型控制器项目创建websocket之间通信的JSON字符串对应的实体类一个房间用同一个Websocketwebsocket集合类&#xff0c;N个房间创建websocket中间件代码Program.cs中的核心代码&#xff0c;使用Websocket聊…

NRK3301语音芯片在智能窗帘上的应用

窗帘是人们日常生活中所经常使用的家居产品&#xff0c;传统的窗帘大多都需要手动拉动窗帘使用&#xff1b;存在着拉拽费劲&#xff0c;挂钩容易掉落等问题。随着数字化转型的升级&#xff0c;推进了窗帘市场的高质量发展。智能窗帘也“适时出现”出现了&#xff0c;一款带有语…

[python 刷题] 287 Find the Duplicate Number

[python 刷题] 287 Find the Duplicate Number 题目&#xff1a; Given an array of integers nums containing n 1 integers where each integer is in the range [1, n] inclusive. There is only one repeated number in nums, return this repeated number. You must sol…

实现Traefik工具Dashboard远程访问:搭建便捷的远程管理平台

文章目录 前言1. Docker 部署 Trfɪk2. 本地访问traefik测试3. Linux 安装cpolar4. 配置Traefik公网访问地址5. 公网远程访问Traefik6. 固定Traefik公网地址 前言 Trfɪk 是一个云原生的新型的 HTTP 反向代理、负载均衡软件&#xff0c;能轻易的部署微服务。它支持多种后端 (D…

wireshark 中无线帧的类型和过滤规则对照表

帧类型 过滤器语法 Management frame wlan.fc.type 0 Control frame wlan.fc.type 1 Data frame wlan.fc.type 2 Association request wlan.fc.type_subtype 0x00 Association response wlan.fc.type_subtype 0x01 Reassociation request wlan.fc.type_subty…

html5 web 按钮跳转方法(及其相关)

html5 web 按钮跳转方法&#xff08;及其相关&#xff09; 方法一 <a href"javascript:" οnclick"history.go(-2); ">返回前两页</a> 方法二 <a href"javascript:" οnclick"self.locationdocument.referrer;">返…

wireshark数据包内容查找功能详解

wireshark提供通过数据包特征值查找具体数据包的功能&#xff0c;具体查找功能如下&#xff0c; &#xff08;1&#xff09;选择查找目标区域&#xff08;也就是在哪里去匹配特征值&#xff09; 如下图&#xff0c;【分组列表】区域查找指的是在最上方的数据包列表区域查找&…

【Pillow库的内涵】01/3 进行基本图像操作

一、说明 Pillow 具有被 Python 社区广泛使用的优势&#xff0c;并且它不像其他一些图像处理库那样具有陡峭的学习曲线。应用PIL库的Image对象&#xff0c;益处很多&#xff0c;首先它可以处理网上URL文件&#xff0c;其次&#xff0c;图片可以方面转化成int32、64或float类型&…

自然语言处理---huggingface平台使用指南

1 huggingface介绍 Huggingface总部位于纽约&#xff0c;是一家专注于自然语言处理、人工智能和分布式系统的创业公司。他们所提供的聊天机器人技术一直颇受欢迎&#xff0c;但更出名的是他们在NLP开源社区上的贡献。Huggingface一直致力于自然语言处理NLP技术的平民化(democr…

源码解析flink的GenericWriteAheadSink为什么做不到精确一次输出

背景 GenericWriteAheadSink是可以用于几乎是精准一次输出的场景&#xff0c;为什么说是几乎精准一次呢&#xff1f;我们从源码的角度分析一下 GenericWriteAheadSink做不到精准一次输出的原因 首先我们看一下flink检查点完成后通知GenericWriteAheadSink开始进行分段的记录…

设计模式:组合模式(C#、JAVA、JavaScript、C++、Python、Go、PHP)

简介&#xff1a; 组合模式&#xff0c;它是一种用于处理树形结构、表示“部分-整体”层次结构的设计模式。它允许你将对象组合成树形结构&#xff0c;以表示部分和整体的关系。这种模式的主要目的是简化客户端代码&#xff0c;并使客户端以一致的方式处理单个对象和组合对象。…

CSS基本讲解与使用(详解)

什么是CSS: CSS&#xff08;Cascading Style Sheets&#xff0c;层叠样式表&#xff09;是一种用于定义网页元素外观和样式的标记语言。它是一种用于将结构化文档&#xff08;通常是HTML和XML&#xff09;的外观和排版从内容的标记中分离出来的技术。CSS的主要目标是将网页的呈…

iOS Flutter Engine源码调试和修改

iOS Flutter Engine源码调试和修改 1. 前提:2. 步骤&#xff1a;3. 参考资料 1. 前提: 已将成功安装deop_tools工具已经通过gclient命令同步好flutter engine源码 2. 步骤&#xff1a; 进入engine/src目录 创建flutter engine构建文件 真机文件debug模式&#xff1a; ./flu…

网络知识基础一

1.HTTP相应的结构是怎么样的? HTTP响应由三个部分组成: 1:状态码(Status Code):描述了响应的状态。可以用来检查是否成功的完成了请求。请求失败的情况下,状态码可用来找出失败的原因。如果Servlet没有返回状态码,默认会返回成功的状态码HttpServletResponse.SC_OK。 2:…

Flyway Desktop updated

Flyway Desktop updated 为比较工件序列化和反序列化添加了额外的调试日志记录。 Flyway Desktop现在将记住以前用于创建项目和匹配克隆的位置。 新的脱机许可工作流现在已在Microsoft Windows上启用。 现在&#xff0c;在配置目标数据库列表时&#xff0c;环境ID是可见的。 现…

【虹科干货】Redis Enterprise vs ElastiCache——如何选择缓存解决方案?

使用Redis 或 Amazon ElastiCache 来作为缓存加速已经是业界主流的解决方案&#xff0c;二者各有什么优势&#xff1f;又有哪些区别呢&#xff1f; 文况速览&#xff1a; - Redis 是什么&#xff1f; - Redis Enterprise 是什么&#xff1f; - Amazon ElastiCache 是什么&…

git如何将master分支合并到自己创建的分支

现在有一个master分支&#xff0c;还有一个自己创建的doc分支&#xff0c;现在想要把master分支合并到dac分支 首先&#xff0c;确保你已切换到doc分支。如果尚未切换&#xff0c;可以使用以下命令切换到doc分支&#xff1a; git checkout doc确保你的doc分支是最新的&#x…