竞赛 深度学习乳腺癌分类

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11
)w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/111866.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序 —— 会议OA项目首页布局与Mock数据交互

14天阅读挑战赛如果世界上有奇迹,那一定是努力的另一个名字。 目录 一、小程序布局 1.1 Flex布局 1.2 Flex属性 二、OA会议首页搭建 2.1 首页底部菜单 2.2 创建后端结口 2.3 Mock模拟数据 2.4 首页轮播图搭建 2.5 首页内容搭建 一、小程序布局 1.1 Flex布…

产品新闻稿撰写流程是怎样的,纯干货

企业和品牌每年都会投放大量的产品新闻稿,一篇优质的产品新闻稿可以掀起更多的关注,收获更多的流量,如何在众多的新闻稿中脱颖而出,吸引读者的注意力?本文伯乐网络传媒将为您揭秘产品新闻稿撰写流程,教您如…

基于epoll封装非阻塞的reactor框架(附源码)

C++常用功能源码系列 文章目录 C++常用功能源码系列前言一、reactor架构二、client端reactor代码三、server端reactor代码四、单reactor架构可以实现百万并发总结前言 本文是C/C++常用功能代码封装专栏的导航贴。部分来源于实战项目中的部分功能提炼,希望能够达到你在自己的项…

学会C++之后,为什么学任何语言都会更加容易?

学会C之后,为什么学任何语言都会更加容易? 编程的本质是把自然语言翻译为机器语言,但机器没有联想力,所以它需要编写者事无巨细地告诉它怎么做。最近很多小伙伴找我,说想要一些c语言资料,然后我根据自己从业…

什么是美颜sdk?直播实时美颜sdk的工作流程和架构分析

在现代社交媒体和娱乐行业中,直播已经成为了一种受欢迎的娱乐形式,同时实时美颜也变得越来越重要。直播实时美颜SDK的工作流程和架构在这一领域起到了关键作用。本文将深入探讨这些SDK的内部机制,从而理解它们如何为用户提供出色的美颜效果。…

Pytest测试框架搭建的关键6个知识点(建议收藏)

在现代软件开发中,测试是确保代码质量和功能稳定性的关键步骤。而Pytest作为一个功能强大且易于使用的Python测试框架,为我们提供了一个优雅的方式来编写和管理测试。本文将为你介绍如何构建高效可靠的测试环境,着重探讨Pytest测试框架搭建时…

LinkedList 源码解析(JDK1.8)

目录 一. 前言 二. 常用方法 三. 源码解析 3.1. 属性和内部类 3.2. 构造函数 3.3. 添加元素 3.4. 获取元素 3.5. 删除元素 3.6. 迭代器 3.6.1. 头到尾方向的迭代 3.6.2. 尾到头方向的迭代 3.6.3. add() 插入元素 3.6.4. remove() 移除元素 一. 前言 LinkedList同时…

TS使用echarts柱状图鼠标放上去并弹出

效果 代码 <template><div><Chart style"width: 100%; height: 344px" :option"chartOption" /></div> </template><script lang"ts" setup>import { ref } from vue;import { ToolTipFormatterParams } f…

Keeplived安装部署(单机双机)

Keeplived官网&#xff1a;https://www.keepalived.org/download.html 一 单机安装配置: 1.上传keepalived安装包并且安装 [rootmaster1 local]# tar -zxvf keepalived-2.2.8.tar.gz [rootmaster1 local]# mv keepalived-2.2.8 keepalived [rootmaster1 local]# chown root:r…

智能井盖是什么?万宾科技智能井盖传感器有什么特点

智能井盖是一种基于物联网和人工智能技术的新型城市设施。它不仅具备传统井盖的功能&#xff0c;还能通过数字化、自动化的方式实现远程监控和智能管理&#xff0c;提升城市运行效率和服务水平。 WITBEE万宾智能井盖传感器EN100-C2是一款井盖异动监测的传感终端。对窨井盖状态(…

分享一下微信公众号抽奖活动怎么弄

微信公众号抽奖活动是一种非常有效的营销手段&#xff0c;可以吸引大量用户参与&#xff0c;提高品牌曝光度和用户粘性。下面将介绍如何策划和实施一个成功的微信公众号抽奖活动。 一、明确活动目的 首先&#xff0c;需要明确微信公众号抽奖活动的目的。通常&#xff0c;抽奖活…

同花顺动态Cookie反爬JS逆向分析

文章目录 1. 写在前面2. 请求分析3. Hook Cookie4. 补环境 1. 写在前面 最近有位朋友在大A失意&#xff0c;突发奇想自己闲来无事想要做一个小工具&#xff0c;监测一下市场行情的数据。自己再分析分析&#xff0c;虽是一名程序员但苦于对爬虫领域相关的技术不是特别熟悉。最后…

万宾科技智能井盖传感器特点介绍

当谈论城市基础设施的管理和安全时&#xff0c;井盖通常不是第一项引人注目的话题。然而&#xff0c;传统井盖和智能井盖传感器之间的差异已经引起了城市规划者和工程师的广泛关注。这两种技术在功能、管理、安全和成本等多个方面存在着显著的差异。 WITBEE万宾智能井盖传感器E…

bug记录——设置了feign的fallback,但是没有生效

问题描述 feign的代码 package com.tianju.order.feign;import com.tianju.order.feign.fallback.StorageFallback; import com.tinaju.common.dto.GoodsDto; import org.springframework.cloud.openfeign.FeignClient; import org.springframework.web.bind.annotation.GetMap…

Edge---微软浏览器-兼容性问题-解决办法(详细)

图片现象&#xff1a; 快捷键&#xff1a;winR &#xff08;进入管理员命令窗口&#xff09; 输入&#xff1a;regedit &#xff08;进入注册表编辑器&#xff09; 点击文件夹&#xff1a;HKEY_LOCAL_MACHINE 找到这个路径的文件项&#xff1a;HKEY_LOCAL_MACHINE\SOFTWARE…

web前端面试-- IEEE754标准JS精度丢失问题0.1+0.2!=0.3、0.2+0.3==0.5 十进制转二进制讲解

本人是一个web前端开发工程师&#xff0c;主要是vue框架&#xff0c;整理了一些面试题&#xff0c;今后也会一直更新&#xff0c;有好题目的同学欢迎评论区分享 ;-&#xff09; web面试题专栏&#xff1a;点击此处 背景 WEB前端面试官&#xff1a;0.20.3是否等于0.5&#xff…

JDBC-day06(数据库连接池)

八&#xff1a;数据库连接池 1. 传统连接数据库的模式 在使用开发基于数据库的web程序时&#xff0c;传统的模式基本是按以下步骤&#xff1a; 在主程序&#xff08;如servlet、bea&#xff0c;ns&#xff09;中建立数据库连接进行sql操作断开数据库连接 传统的模式存在的问…

zookeeper(目前只有安装)

安装 流程 学kafka的时候安装 Apache ZooKeeper 安装地址&#xff1a;https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz 解压 tar -zxvf kafka_2.12-3.0.0.tgz -C /export/server/ 改配置 cd config cp zoo_sample.cfg z…

Pixhawk 6c (PX4)真机USB连接mavros失败

概述 笔者和同事近期购买了Pixhawk6c&#xff0c;它也是目前Pixhawk系列中最新的飞控。 但是在测试的过程中遇到了一个问题&#xff0c;发现它无法连接到mavros。 于是进行了一系列原因摸排&#xff0c;在国内的博客尚未看到能用的解决方案&#xff0c;在px4论坛上倒是找到了答…

VUE:侧边弹出栏组件,组件中有树状图,搜索框可筛选树状图节点,可收缩

作者:CSDN @ _乐多_ 本文记录了一个侧边弹出栏组件代码。代码即插即用。 弹出栏中有树状图,搜索框,可收缩。 其中,搜索框可筛选树状图节点。点击右侧小按钮可以收缩弹出框,点击X号也可以收缩弹出框。 文章目录 一、组件代码代码依赖element-plus库。且需要下载几个svg图…