[数据挖掘、数据分析] clickhouse在go语言里的实践

系列文章目录

[数据挖掘] clickhouse在go语言里的实践
[数据挖掘] 用户画像平台构建与业务实践


文章目录

  • 系列文章目录
  • 前言
  • 一、clickhouse的起源
  • 二、OLAP/OLTP
    • 2.1、主流的OLAP/OLTP数据库
  • 三、go语言开发实践
    • 3.1、安装配置go语言环境,配置IDE
      • 3.1.1、Go开发环境安装
      • 3.1.2、IDE开发环境安装
    • 3.2、goframe工具安装
    • 3.3、引入clickhouse组件
    • 3.4、goframe使用clickhouse的完整项目
  • 4、clickhouse的表引擎分析
    • 4.1、MergeTree
    • 4.2、ReplacingMergeTree
  • 5、clickhouse为何适合做大数据分析、数据挖掘,什么情况下用什么样的表引擎,以及clickhouse的缺陷
    • 5.1、clickhouse为何适合做大数据分析、数据挖掘
    • 5.2、ClickHouse查询缺陷
      • 5.2.1、单机时的查询处理缺陷
      • 5.2.2、集群成本高
      • 5.3.3、多表联查性能不佳
      • 5.3.4、修改、删除支持非常差
  • 6、架构设计
    • 6.1、Clickhouse
    • 6.2、MySQL
    • 6.3、Redis
  • 总结


前言

今天给大家介绍一款OLAP大数据处理软件 clickhouse ,在业界它有一个荣誉,那就是”快“,当然此快不是开车快的意思,是指clickhouse在大数据量级的查询方面,对比Spark 、MySQL 、Hive 、Hadoop,速度有很大的提升。
下面我们从clickhouse的起源、OLAP/OLTP、go语言开发实践、clickhouse的表存储引擎分析这几个方面,讲解clickhouse为何适合做大数据分析、数据挖掘,什么情况下用什么样的表引擎,以及clickhouse的缺陷等。


一、clickhouse的起源

ClickHouse起源于Yandex公司的Metrica产品团队。Metrica是一款Web流量分析工具,根据用户行为数据采集,进行数据OLAP分析。数据采集的Event由页面的点击(click)产生,然后进入数据仓库进行OLAP分析。ClickHouse的全称为Click Stream,Data WareHouse,简称ClickHouse。2021年9月20日,ClickHouse团队从Yandex独立,成立公司。

二、OLAP/OLTP

OLAP和OLTP是数据处理和交易过程中的两种不同类型的方法。

OLTP,也称为联机事务处理过程,主要侧重于前台接收的用户数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果。这种处理方式是对用户操作快速响应的方式之一,其基本特征是处理少量的事务性数据。

OLAP,全称联机分析处理,使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的。它帮助分析人员快速获得数据,并进行分析和预测。

2.1、主流的OLAP/OLTP数据库

以下是一些主流的OLAP和OLTP数据库:

数据库类型数据库名描述
OLTP数据库--
-MySQLOLTP的代表,擅长事务处理,支持数据频繁插入或修改,适用于业务开发人员。
-Oracle也是一个功能强大的OLTP数据库,广泛用于企业级应用。
OLAP数据库--
-Greenplum一个分布式数据库,擅长对大量数据进行多维复杂分析,追求极致性能,面向分析决策人员。
-HiveHadoop的数据仓库工具,可以处理大规模的结构化数据,提供类似于SQL的查询功能,适用于数据仓库和BI平台。
-ClickHouse一个开源的列式存储数据库,适合用于数据仓库和数据湖等场景,支持复杂的数据分析查询操作。
-AWS RedshiftAWS Redshift是AWS提供的一款云上数据仓库服务。只需通过简单的鼠标点击即可得到一款高性能、高可靠的数据仓库服务。它使用密集存储 (DS) 节点,能够以非常低的价格创建超大型数据仓库。在数据仓库、运营数据库和数据湖间分析结构化和半结构化数据,使用 AWS 设计的硬件和机器学习在任意规模提供最佳性价比。
-Doris一个实时数仓,可以解决 PB 级别的数据量(如果高于 PB 级别,不推荐使用 Doris 解决,可以考虑用 Hive 等工具),解决结构化数据,查询时间一般在秒级或毫秒级。Doris 是由百度大数据部研发的,之前叫百度 Palo,2018年贡献到 Apache 社区后,更名为 Doris。
-TiDB是腾讯云推出的一个开源的分布式数据库。TiDB 是一个具有高可用性、高性能的 NewSQL 数据库,同时具备了类似 NoSQL 的灵活数据模型。TiDB 目标是打造一个完全对等、共享访问能力、无单点故障、在线扩展、强一致性的分布式数据库。

三、go语言开发实践

这里推荐大家使用go语言的goframe框架,且已开发支持多种数据库,包括:mysql 、mariadb、tidb、pgsql、mssql、oracle、clickhose、dm、sqllite。源码开放,可以提交pr,支持扩展其他数据库组件。
亲测,轻松支持mysql、clickhose
在这里插入图片描述

3.1、安装配置go语言环境,配置IDE

3.1.1、Go开发环境安装

1、下载Go开发包
访问Go国内镜像站下载页面 https://golang.google.cn/dl/,并在页面最上方的版本中选择你当前的系统版本,会下载最新版本的Go开发包:
在这里插入图片描述
2、安装引导
访问官方安装介绍页面 https://golang.google.cn/doc/install,按照当前系统版本执行对应的安装流程即可。

Windows(msi)和MacOS(pkg)推荐使用安装包的方式来安装。作者当前MacOS安装包(pkg)安装过程如下图所示:
在这里插入图片描述
在这里插入图片描述

3.1.2、IDE开发环境安装

目前Go的IDE有两款比较流行,一款是VSCode+Plugins(免费),另一款是JetBrains公司的Goland(收费)。由于JetBrains也是GoFrame框架的赞助商,因此我们优先推荐使用Goland来作为开发IDE,下载及注册请参考网上教程(百度 或 Google)。

JetBrains的官方网站为:https://www.jetbrains.com

**备注: 熟悉Java开发工具Idea的同学可以很快上手Goland,操作上感觉都似曾相识 **

1、Goland的使用
我们来创建第一个Go程序吧,老规矩,上hello world。
在这里插入图片描述
2、创建项目
这里需要注意的是Go安装文件的路径(SDK),官方安装文档有详细说明,请仔细阅读。

其中的Location随意选择一个本地路径即可。
在这里插入图片描述
3、创建程序
新建一个go文件,叫做hello.go,并输入以下代码:
在这里插入图片描述
4、执行运行
在这里插入图片描述
在这里插入图片描述

3.2、goframe工具安装

帮助文档: https://goframe.org/pages/viewpage.action?pageId=1115782
建议安装最新版本
在这里插入图片描述

3.3、引入clickhouse组件

clickhouse帮助文档:
https://goframe.org/pages/viewpage.action?pageId=1114245#ORM%E4%BD%BF%E7%94%A8%E9%85%8D%E7%BD%AE-%E9%85%8D%E7%BD%AE%E6%96%B9%E6%B3%95

数据库配置文件:config.yaml
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4、goframe使用clickhouse的完整项目

一个完整的Web3区块链项目,使用goframe + clickhouse + mysql + redis ,本人原创,完全拥有版权
地址:https://github.com/hd5723/chainApi
在这里插入图片描述


4、clickhouse的表引擎分析

官方文档(支持中、英、俄):https://clickhouse.com/docs/zh/engines/table-engines
在这里插入图片描述
简单介绍2种常用的表引擎:MergeTree、ReplacingMergeTree

4.1、MergeTree

Clickhouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎。

MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中。数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合并。相比在插入时不断修改(重写)已存储的数据,这种策略会高效很多。

主要特点:

  • 存储的数据按主键排序。
    这使得您能够创建一个小型的稀疏索引来加快数据检索。

  • 如果指定了 分区键 的话,可以使用分区。

  • 在相同数据集和相同结果集的情况下 ClickHouse 中某些带分区的操作会比普通操作更快。查询中指定了分区键时 ClickHouse 会自动截取分区数据。这也有效增加了查询性能。

4.2、ReplacingMergeTree

该引擎和 MergeTree 的不同之处在于它会删除排序键值相同的重复项。

数据的去重只会在数据合并期间进行。合并会在后台一个不确定的时间进行,因此你无法预先作出计划。有一些数据可能仍未被处理。尽管你可以调用 OPTIMIZE 语句发起计划外的合并,但请不要依靠它,因为 OPTIMIZE 语句会引发对数据的大量读写。

因此,ReplacingMergeTree 适用于在后台清除重复的数据以节省空间,但是它不保证没有重复的数据出现。


5、clickhouse为何适合做大数据分析、数据挖掘,什么情况下用什么样的表引擎,以及clickhouse的缺陷

5.1、clickhouse为何适合做大数据分析、数据挖掘

clickhouse 与MySQL性能对比

ClickHouse和MySQL是两种不同的数据库管理系统,它们在性能方面有一些区别。以下是ClickHouse和MySQL性能的对比:

  • 数据存储结构:ClickHouse是一种列式存储数据库,适合处理大量数据,特别是在分析查询方面表现出色。而MySQL是一种行式存储数据库,以行为单位存储数据,适合事务处理和常规查询。
  • 处理能力:ClickHouse在处理大规模数据集时表现出色,提供快速的聚合和分析能力。MySQL在小规模数据和事务处理方面表现较好。
  • 查询语言:ClickHouse使用自己的查询语言ClickHouse SQL(类似于标准SQL),支持复杂的分析查询和聚合操作。MySQL则使用标准SQL。
  • 数据一致性:MySQL是一种关系型数据库,支持事务和ACID特性,确保数据的一致性。ClickHouse主要用于分析型查询,对于数据的一致性要求较低。
  • 性能和扩展性:ClickHouse在处理大规模数据和高并发查询时具有优势,可以水平扩展,并提供在分布式环境中运行的能力。MySQL在小规模应用和事务处理方面表现较好。
    总的来说,MySQL适合事务处理和一般查询。ClickHouse适合处理大规模数据和分析查询,ClickHouse的适合大宽表(上百个字段、海量数据)统计分析查询。

5.2、ClickHouse查询缺陷

5.2.1、单机时的查询处理缺陷

ClickHouse在查询时,会调动尽可能多的服务器资源,一般CPU占用会高达80%以上,因此不合适高并发查询。

5.2.2、集群成本高

如果要处理高并发问题, 需要增加服务器,成本非常高

5.3.3、多表联查性能不佳

适合适合大宽表(上百个字段)查询,多表查询就算字段不多,性能也不佳

5.3.4、修改、删除支持非常差

ClickHouse支持实时统计查询,但是修改、删除性能非常差,一般使用表引擎ReplacingMergeTree来解决修改、删除问题。

对ClickHouse进行修改可能会引发以下问题:

  • 数据类型不一致:如果在对表结构进行修改时,改变了字段的数据类型,而后续插入的数据类型与修改后的表结构不匹配,可能会导致数据插入失败或数据不一致。例如,如果在ClickHouse中更改了字段类型从int变为float,但是后续插入的数据仍然是int类型,那么这些数据会被截断,导致数据不一致。
  • 高频删除数据:如果在短时间内删除大量数据,ClickHouse可能会出现“Cannot allocate memory”的错误。因为ClickHouse在处理删除操作时,会先在内存中构建删除树,如果删除操作过于频繁,可能会耗尽内存。
  • 重复数据处理:ClickHouse对重复数据的处理可能会出现问题。如果在同一个分片上插入的数据已经存在,ClickHouse会进行去重。然而,如果在不同分片间插入重复数据,ClickHouse不保证去重。这可能会导致数据重复的问题。

因此,在对ClickHouse进行修改时,一定要小心谨慎,并做好相应的测试,以避免可能的问题。如遇到修改后无法存入数据等问题,可以检查是否是上述情况导致,并按照相应的方法解决。如果是数据源数据进行了多次调整,数据字段进行过调整,要确保调整后的数据兼容旧的数据格式。


6、架构设计

在实际的项目中,数据操作方面我们采用了Clickhouse + MySQL + Redis,分工明确。

6.1、Clickhouse

功效:实时统计查询
数据来源:设置定时任务,汇总mysql多个表几十个上百个字段,通过go程序写入Clickhouse
策略:定时增量更新、很少根据主键修改/删除

6.2、MySQL

功效:定时任务,查询多表数据
数据来源:通过ETH rpc接口获取数据,并写入
策略:频繁的写入数据,定时查询(分钟级、小时级等),少量修改/删除

6.3、Redis

用于维护版本号,缓存业务的第一页数据等


总结

OLAP/OLTP数据库发展很多年了,也有很多争论,但总体来说,符合自己业务的才是好的。不同的业务、数据体量的增长、公司技术栈的储备等,都是影响因素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/111712.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Scala语言入门

学习了这么久让我们来回顾一下之前的内容吧 Hadoop生态体系知识串讲 Scala编程语言 一、概述 http://scala-lang.org 专门为计算而生的语言,Scala将(Java后者C)面向对象设计和函数式编程结合在一起的简洁的高级编程语言。而函数式编程强调的是通过传递算子&…

【理论学习】Vision-Transformer

文章目录 1. self-attention理论1.1. Attention(Q,K,V)的实现 2. Multi-head Self-Attention理论3. Positional Encoding4. Vision Transformer 声明:本篇文章是我再b站观看博主霹雳吧啦Wz的视频后,做的一篇笔记,推荐大家看完视频在来简单浏览…

react仿照antd progress实现可自定义颜色的直角矩形进度条

可传颜色、带滑块的直角进度条 很歹毒的UI设计&#xff08;真的很丑&#xff09; 实现&#xff1a; class RankProgress extends React.Component {render() {const { percent, progressColor } this.props;return (<div className{styles.progress}><div classNam…

git 使用

参考 https://git-scm.com/book/zh/v2/Git-%E5%9F%BA%E7%A1%80-%E8%8E%B7%E5%8F%96-Git-%E4%BB%93%E5%BA%93 文件的状态变化周期 文章目录 git 基础检查当前文件状态、查看已暂存和未暂存的修改暂存前后的变化跟踪新文件提交更新移除文件移动文件、重命名操作查看提交历史撤消…

从零开始构建基于YOLOv5的目标检测系统

本博文从零开始搭建基于YOLOv5模型的目标检测系统&#xff08;具体系统参考本博主的其他博客&#xff09;&#xff0c;手把手保姆级完成环境的搭建。 &#xff08;1&#xff09;首先Windows R输入cmd命令后打开命令窗口&#xff0c;进入项目目录&#xff0c;本博文以野生动物…

百度的新想象力在哪?

理解中国大模型&#xff0c;百度是一个窗口。这个窗口的特殊性不仅在于变化本身&#xff0c;而是在于百度本身就是那个窗口。 作者|皮爷 出品|产业家 沿着首钢园北区向西北步行10分钟&#xff0c;就能看到一个高约90米的大跳台&#xff0c;在工业园钢铁痕迹的印衬下&#…

Cannot use object of type __PHP_Incomplete_Class as array

场景&#xff1a;将项目复制 出来一份后&#xff0c;修改控制器&#xff0c;打开后就报错 解决&#xff1a;将runtime 清除后就正常了

TikTok Shop新结算政策:卖家选择权加强,电商市场蓄势待发

据悉&#xff0c;从2023年11月1日开始&#xff0c;TikTok Shop将根据卖家的店铺表现来应用3种不同类型的结算期&#xff0c;其中&#xff0c;标准结算期&#xff1a;资金交收期为8个日历日&#xff1b;快速结算期&#xff1a;资金交收期为3个日历日&#xff1b;延长结算期&…

企业数字化转型时,会遇到的5大挑战

企业数字化转型时&#xff0c;会遇到的5大挑战添加链接描述 数字化转型已然是当今商业战略的一大基石&#xff0c;根据Gartner的《2023年度董事会调查》显示&#xff0c;有89%的企业将数字业务视为其增长的核心。但该研究的另一项统计数据也显示&#xff1a;在这些企业中&…

KingBase库模式表空间和客户端认证(kylin)

库、模式、表空间 数据库 数据库基集簇与数据库实例 KES集簇是由单个KES实例管理的数据库的集合KES集簇中的库使用相同的全局配置文件和监听端口、共享相关的进程和内存结构同一数据库集簇中的进程、相关的内存结构统称为实例 数据库 数据库是一个长期存储在计算机内的、有…

AI猫咪穿搭也太萌了!用AI写出好故事的22条诀窍;吴恩达AI新课预告;2024年十大战略技术趋势 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; &#x1f525; 可口可乐与好利来跨界联名&#xff0c;推出与AI共创的新品巧克力 继「酱香拿铁」后又有一款跨界合作让人眼前一亮——可口可乐与好利来…

通用音乐播放器蜂鸣器AX301开发板verilog,视频/代码

名称&#xff1a;通用音乐播放器代码&#xff0c;蜂鸣器播放音乐 软件&#xff1a;Quartus 语言&#xff1a;Verilog 代码说明&#xff1a;本代码为音乐播放器通用代码&#xff0c;只需修改管脚即可适配其他开发板 代码功能&#xff1a; 设计一个音乐播放器&#xff0c;使用…

解决一则诡异的javascript函数不执行的问题

有个vue 音乐播放器项目&#xff0c;由于之前腾讯的搜索接口没法用了&#xff0c;于是改成了别家的搜索接口。 但是由于返回数据结构不一样&#xff0c;代码重构的工作量还是挺大的&#xff1a;包括数据请求&#xff0c;数据处理&#xff0c;dom渲染&#xff0c;处理逻辑都进行…

Elasticsearch:什么是余弦相似度?

余弦相似度是数据科学、文本分析和机器学习领域的基本概念。 如果你想知道什么是余弦相似度或者它如何在现实世界的应用程序中使用&#xff0c;那么你来对地方了。 本指南旨在让你深入了解相似性是什么、其数学基础、优点及其在不同领域的各种应用。读完本指南后&#xff0c;你…

PHP 变量

变量 变量的声明、使用、释放 变量定义 形式 $ 变量名;严格区分大小写 $name; $Name; $NAME //三个变量不是同一个变量字母、数字、下划线组成&#xff0c;不能以数字开头&#xff0c;不能包含其他字符(空白字符、特殊字符) 驼峰式命名法、下划线式命名法 $first_name; $fi…

在 Visual Studio Code (VS Code) 中设置

在 Visual Studio Code (VS Code) 中设置代理服务器的详细教程如下&#xff1a; 打开 Visual Studio Code。 在顶部菜单栏中&#xff0c;点击 "File"&#xff08;文件&#xff09; > "Preferences"&#xff08;首选项&#xff09; > "Settings…

IP协议(上)

目录 一、初步认识IP协议 二、认识IP地址 三、协议报头格式 1.报头和有效载荷分离 2.20字节的固定数据 四、网段划分 1.一个小例子 2.认识IP地址的划分 3.数据的传输过程 4.特殊的IP地址 5.通信运营商 &#xff08;1&#xff09;通信运营商的作用 &#xff08;2&a…

如何利用考培系统进行个性化学习和评估

考培系统作为一种现代化的学习和评估工具&#xff0c;可以为学生提供个性化的学习和评估服务。它利用先进的技术和算法&#xff0c;根据学生的学习情况和需求&#xff0c;为其量身定制学习计划&#xff0c;并提供相应的评估反馈。 1. 个性化学习 考培系统通过分析学生的学习情…

javaEE - 2(11000字详解多线程)

一&#xff1a;多线程带来的的风险-线程安全 线程安全的概念&#xff1a;如果多线程环境下代码运行的结果是符合我们预期的&#xff0c;即在单线程环境应该的结果&#xff0c;则说这个程序是线程安全的。 当多个线程同时访问共享资源时&#xff0c;就会产生线程安全的风险&am…

【AIGC核心技术剖析】扩大富有表现力的人体姿势和形状估计SMPLer-X模型

富有表现力的人体姿势和形状估计 (EHPS) 将身体、手和面部运动捕捉与众多应用结合起来。尽管取得了令人鼓舞的进展,但当前最先进的方法仍然在很大程度上依赖于有限的训练数据集。在这项工作中,我们研究了将 EHPS 扩展到第一个通用基础模型(称为 SMPLer-X),以 ViT-Huge 作为…