【深度学习基础知识(一):卷积神经网络CNN基础知识】

@深度学习基础知识

深度学习基础知识(一):卷积神经网络CNN基础知识

卷积神经网络CNN基础知识

0、目录

1. CNN卷积神经网络的特点

2. 卷积操作基础知识

    2.1 卷积操作的概念2.2 卷积操作的种类2.3 卷积操作后特征图谱大小计算公式 

3. 池化操作基础知识

	3.1 池化操作的作用/为什么要进行池化操作?3.2 池化操作的种类3.3 池化操作后特征图谱大小计算公式	 

1、CNN卷积神经网络的特点

  • CNN的使用范围是具有局部空间相关性的数据,比如图像、自然语言、语音。
  • 局部连接(稀疏连接):可以提取局部特征
  • 权值共享:减少参数数量,降低训练难度,避免过拟合,提升模型“平移不变性”
  • 降维:通过池化或卷积stride实现
  • 多层次结构:将低层次的局部特征组合成较高层次的特征,不同层级的特征可以对应不同任务

2、卷积操作基础知识

2.1 卷积操作的概念

  • 卷积操作
    当卷积核在输入图像上扫描时,将卷积核与输入图像中对应位置的数值逐个相乘,最后汇总求和,就得到该位置的卷积结果。不断移动卷积核,就可算出各个位置的卷积结果。
  • 卷积属性
    • 卷积核(Kernel):卷积操作的感受野,直观理解就是一个滤波矩阵,普遍使用的卷积核大小为3×3、5×5等;
    • 步长(Stride):卷积核遍历特征图时每步移动的像素,如步长为1则每次移动1个像素,步长为2则每次移动2个像素(即跳过1个像素),以此类推;
    • 填充(Padding):处理特征图边界的方式,一般有两种,一种是对边界外完全不填充,只对输入像素执行卷积操作,这样会使输出特征图的尺寸小于输入特征图尺寸;另一种是对边界外进行填充(一般填充为0),再执行卷积操作,这样可使输出特征图的尺寸与输入特征图的尺寸一致;
    • 通道(Channel):卷积层的通道数(层数)
  • 卷积操作示意图
    如下图所示,一个卷积核(kernel)为3×3、步长(stride)为1、填充(padding)为1的二维卷积过程:
    在这里插入图片描述
  • 卷积操作计算示意图
    如下图所示,一个33大小的卷积核(矩阵)正在一个55大小的图像(矩阵)进行扫描,根据公式:y=wx进行叠加即可:
    在这里插入图片描述

2.2 卷积操作的种类

  1. 二维卷积(单通道卷积版本)
  • 2D Convolution: the single channel version
  • 只有一个通道的卷积
  • 如下图是一个卷积核(kernel)为3×3、步长(stride)为1、填充(padding)为0的卷积
  1. 二维卷积(多通道版本)
  • 2D Convolution: the multi-channel version

  • 拥有多个通道的卷积,例如处理彩色图像时,分别对R, G, B这3个层处理的3通道卷积,如下图:
    在这里插入图片描述

  • 再将三个通道的卷积结果进行合并(一般采用元素相加),得到卷积后的结果,如下图:

在这里插入图片描述

  1. 三维卷积3D Convolution
  • 卷积有三个维度(高度、宽度、通道),沿着输入图像的3个方向进行滑动,最后输出三维的结果
  1. 1x1卷积
  • 当卷积核尺寸为1x1时的卷积,也即卷积核变成只有一个数字。
  • 1x1卷积的作用在于能有效地减少维度,降低计算的复杂度。
  1. 反卷积 / 转置卷积
  • Deconvolution / Transposed Convolution)
  • 卷积是对输入图像提取出特征(可能尺寸会变小),而所谓的“反卷积”便是进行相反的操作。但这里说是“反卷积”并不严谨,因为并不会完全还原到跟输入图像一样,一般是还原后的尺寸与输入图像一致,主要用于向上采样。
  • 从数学计算上看,“反卷积”相当于是将卷积核转换为稀疏矩阵后进行转置计算,因此,也被称为“转置卷积”
  • 如下图,在2x2的输入图像上应用步长为1、边界全0填充的3x3卷积核,进行转置卷积(反卷积)计算,向上采样后输出的图像大小为4x4。

在这里插入图片描述
6. 空洞卷积(膨胀卷积)

  • Dilated Convolution / Atrous Convolution
  • 为扩大感受野,在卷积核里面的元素之间插入空格来“膨胀”内核,形成“空洞卷积”(或称膨胀卷积),并用膨胀率参数L表示要扩大内核的范围,即在内核元素之间插入L-1个空格。
  • 当L=1时,则内核元素之间没有插入空格,变为标准卷积。 如下图为膨胀率L=2的空洞卷积:
    在这里插入图片描述
  1. 空间可分离卷积(Spatially Separable Convolutions)
  • 空间可分离卷积是将卷积核分解为两项独立的核分别进行操作。一个3x3的卷积核分解如下图:
    在这里插入图片描述
  • 分解后的卷积计算过程如下图,先用3x1的卷积核作横向扫描计算,再用1x3的卷积核作纵向扫描计算,最后得到结果。采用可分离卷积的计算量比标准卷积要少。
    在这里插入图片描述
  1. 深度可分离卷积(Depthwise Separable Convolutions)
  • 深度可分离卷积的方法有所不同。正常卷积核是对3个通道同时做卷积。也就是说,3个通道,在一次卷积后,输出一个数。
  • 深度可分离卷积分为两步:
    (1)用三个卷积对三个通道分别做卷积,这样在一次卷积后,输出3个数。
    (2)这输出的三个数,再通过一个1x1x3的卷积核(pointwise核),得到一个数。所以深度可分离卷积其实是通过两次卷积实现的。
    第一步,对三个通道分别做卷积,输出三个通道的属性:
    在这里插入图片描述

具体运算过程如下:
在这里插入图片描述

第二步,用卷积核1x1x3对三个通道再次做卷积,这个时候的输出就和正常卷积一样,是8x8x1:
在这里插入图片描述

  • 这步就是正常的卷积过程,只是卷积核大小为(3x1x1),一个卷积核得到一个特征图;8x8x3 * 1x1x3x1 => 8x8x1。

  • 深度可分离与普通卷积神经网络的区别

    添加了一个1*1的卷积核
    如果仅仅是提取一个属性,深度可分离卷积的方法,不如正常卷积
    随着要提取的属性越来越多,深度可分离卷积就能够节省更多的参数
    
  • 计算量比较

    默认输入图像大小为D*D
    默认卷积核大小为K*K
    M:输入通道数,N:输出通道数,
    普通卷积 = K * K * M * N * D * D 
    深度可分离卷积 = K *K * M * D * D + M * N * D * D
    优化比例 = (K *K * M * D * D + M * N * D * D)/ (K * K * M * N * D * D)=1/N+1/(K * K)
  • 总结

    ==========
    DSC作为普通卷积的一种替代品,它的最大优点是计算效率非常高。
    因此使用DSC构建轻量级模型是当下非常常见的做法。
    不过DSC的这种高效性是以低精度作为代价的。
    ===========
    

2.3 卷积操作后特征图谱大小计算公式

1.普通卷积

经过某层卷积操作后的特征图大小计算方式:

 ====h1代表输入图像的高度,w1代表输入图像的宽度,k代表卷积核大小,s代表步长====h2、w2分别代表输出的特征图像高度和宽度====h2 = (h1-k+2padding)/s + 1 w2 = (w1-k+2padding)/s + 1 
2.空洞卷积

空洞卷积的等效卷积核大小

h1代表输入图像的高度,k代表卷积核大小,s代表步长,d为diarate参数
h2代表输出的特征图像高度
=====
h2=1+[h1-(k*d-1)+2padding]/s
  • 注意:卷积(除不尽)向下取整,池化(除不尽)向上取整。
3. 常规卷积和深度可分离卷积的参数量
普通卷积:3x3x3x4=1083x3是卷积核尺寸,3是输入图片通道数目,4是输出卷积核的个数。
====================
深度可分离卷积:DW:3x3x3x1=27这里卷积核个数其实只设置为1。会形成3张feature mapPW:1x1x3x4=121x1为卷积核的尺寸,3为上一层feature map的数量,4为最终需要的维度。其实这里我们也得到了4维的feature map。
total: 27+12=39

明显可以看到,深度可分离卷积计算量比普通卷积小很多,只有其近三分之一的计算量。

3. 池化操作基础知识

3.1 池化操作的作用/为什么要进行池化操作?

  • 池化层大大降低了网络模型参数和计算成本,也在一定程度上降低了网络过拟合的风险。概括来说,池化层主要有以下4点作用:

    1.增大网络感受野
    2.抑制噪声,降低信息冗余
    3.降低模型计算量,降低网络优化难度,防止网络过拟合
    4.使模型对输入图像中的特征位置变化更加鲁棒
    

3.2 池化操作的种类

1. Max Pooling(最大池化)

  • 是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。
  • 对于最大池化操作,只选择每个矩形区域中的最大值进入下一层,而其他元素将不会进入下一层。所以最大池化提取特征图中响应最强烈的部分进入下一层,这种方式摒弃了网络中大量的冗余信息,使得网络更容易被优化。
  • 最大池化也常常丢失了一些特征图中的细节信息,所以最大池化更多保留些图像的纹理信息

2. Average Pooling(平均池化)

  • 将输入的图像划分为若干个矩形区域,对每个子区域输出所有元素的平均值。
  • 平均池化取每个矩形区域中的平均值,可以提取特征图中所有特征的信息进入下一层,而不像最大池化只保留值最大的特征,所以平均池化可以更多保留些图像的背景信息

3.Global Average Pooling(全局平均池化)

  • 作用
    在卷积神经网络训练初期,卷积层通过池化层后一般要接多个全连接层进行降维,最后再Softmax分类,这种做法使得全连接层参数很多,降低了网络训练速度,且容易出现过拟合的情况。在这种背景下,M Lin等人提出使用全局平均池化Global Average Pooling来取代最后的全连接层。用很小的计算代价实现了降维,更重要的是GAP极大减少了网络参数(CNN网络中全连接层占据了很大的参数)。

  • 全局平均池化是一种特殊的平均池化,只不过它不划分若干矩形区域,而是将整个特征图中所有的元素取平均输出到下一层。

  • 作为全连接层的替代操作,GAP对整个网络在结构上做正则化防止过拟合,直接剔除了全连接层中黑箱的特征,直接赋予了每个channel实际的类别意义。

  • 使用GAP代替全连接层,可以实现任意图像大小的输入,而GAP对整个特征图求平均值,也可以用来提取全局上下文信息,全局信息作为指导进一步增强网络性能。

    论文地址: https://arxiv.org/pdf/1312.4400.pdf%20http://arxiv.org/abs/1312.4400
    代码链接: https://worksheets.codalab.org/worksheets/0x7b8f6fbc6b5c49c18ac7ca94aafaa1a7
    

4. Mix Pooling(混合池化)

  • 为了提高训练较大CNN模型的正则化性能,受Dropout的启发,Dingjun Yu等人提出了一种随机池化Mix Pooling的方法,随机池化用随机过程代替了常规的确定性池化操作,在模型训练期间随机采用了最大池化和平均池化方法,并在一定程度上有助于防止网络过拟合现象。

  • 其中,是0或1的随机值,表示选择使用最大池化或平均池化,换句话说,混合池化以随机方式改变了池调节的规则,这将在一定程度上解决最大池和平均池所遇到的问题。

  • 混合池化优于传统的最大池化和平均池化方法,并可以解决过拟合问题来提高分类精度

  • 此外该方法所需要的计算开销可忽略不计,而无需任何超参数进行调整,可被广泛运用于CNN。

3.3 池化操作后特征图谱大小计算公式

 ====h1代表输入图像的高度,w1代表输入图像的宽度,k代表卷积核大小,s代表步长====h2、w2分别代表输出的特征图像高度和宽度====h2 = (h1-k) /s + 1 w2 = (w1-k) /s + 1 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/111577.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

02、Python ------- 简单爬取下载小视频

简单爬取小视频 1、装模块 按键盘 winr 输入cmd , 输入命令: pip install requests 也有说在这个目录下面执行命令 pip install requests 执行失败 执行如果失败,在命令后面添加镜像 pip install requests -i https://mirrors.aliyun.com/pypi/sim…

Steam中如何设置HTTP服务器防封

要在 Steam 中设置HTTP服务器,请按照以下步骤操作: 1、打开 Steam 客户端。 2、点击“设置”(即齿轮图标),然后选择“网络”。 3、在“网络”页面中,找到“HTTP服务器”部分。 4、首先,将“使…

显示杂谈(二)winscope的使用

WinScope 提供了用于在窗口转换期间和转换后记录和分析 WindowManager 状态和 SurfaceFlinger 状态的基础架构和工具。WinScope 将所有相关的系统服务状态记录在一个跟踪文件中,您可以使用该文件重现并逐步查看转换。 抓winscope相关文件: 通过快捷设置记录跟踪情…

Nacos 401 Client not connected

jar包在本地运行没有问题,但是把包放到linux上就运行不起来,报错如下(远程debug截的图) 后来看到文章-猜测可能和连接时间有关系 就是本地连接快,linux建立连接慢,采用上面文章的人工强制sleep建议&#…

Vue2基础知识(二) 计算属性/侦听器/生命周期

💌 所属专栏:【Vue2】😀 作 者:长安不及十里💻工作:目前从事电力行业开发🌈目标:全栈开发🚀 个人简介:一个正在努力学技术的Java工程师,专注基础和…

[云原生1.] Docker容器的简单介绍和基本管理

文章目录 1. Docker容器的基本概述1.1 简介1.2 容器的优点1.3 Docker与虚拟机的区别1.4 Docker核心组成1.4.1 镜像1.4.2 容器1.4.3 仓库 1.5 容器在内核中支持2种重要技术1.5.1 linux六大namespace(命名空间) 1.6 Docker的使用场景 2. Docker的部署2.1 前…

小红书达人怎么对接,博主沟通流程汇总!

想要在小红书平台进行宣推,就离不开博主的帮助。一般来说,与小红书博主沟通,分为意向沟通、下单沟通、内容沟通和数据沟通方面。今天为大家分享下小红书达人怎么对接,博主沟通流程汇总! 一、意向沟通 意向沟通是小红书…

【MyBatis进阶】mybatis-config.xml分析以及try-catch新用法

目录 尝试在mybatis项目中书写增删改查 遇见问题:使用mybaties向数据库中插入数据,idea显示插入成功,但是数据库中并没有数据变化? MyBatis核心配置文件剖析 细节剖析: try-catch新用法 截至目前我的项目存在的问题&#xf…

短视频矩阵系统/pc、小程序版独立原发源码开发搭建上线

短视频剪辑矩阵系统开发源码----源头搭建 矩阵系统源码主要有三种框架:Spring、Struts和Hibernate。Spring框架是一个全栈式的Java应用程序开发框架,提供了IOC容器、AOP、事务管理等功能。Struts框架是一个MVC架构的Web应用程序框架,用于将数…

使用Apache和内网穿透实现私有服务公网远程访问——“cpolar内网穿透”

文章目录 前言1.Apache服务安装配置1.1 进入官网下载安装包1.2 Apache服务配置 2.安装cpolar内网穿透2.1 注册cpolar账号2.2 下载cpolar客户端 3. 获取远程桌面公网地址3.1 登录cpolar web ui管理界面3.2 创建公网地址 4. 固定公网地址 前言 Apache作为全球使用较高的Web服务器…

Maven安装教程

目录 不喜欢废话,直接上教程! 第一步:下载maven 第二步:环境配置 第三步:配置maven 配置maven包括配置本地仓库的位置,配置镜像,配置JDK,都在settings.xml里面配置 配置本地仓…

UI自动化测试的痛点

当我们找工作的时候查看招聘信息发现都需要有自动化测试经验,由此看来测试人员不会一点自动化测试技术都不好意思说自己是做软件测试的。大部分测试人员也都是从使用自动化测试工具、录制回放、测试脚本、开发小工具入门自动化测试的,然后在慢慢的接触 U…

深入探究音视频开源库 WebRTC 中 NetEQ 音频抗网络延时与抗丢包的实现机制

目录 1、引言 2、什么是NetEQ? 3、NetEQ技术详解 3.1、NetEQ概述 3.2、抖动消除技术 3.3、丢包补偿技术 3.4、NetEQ概要设计 3.5、NetEQ的命令机制 3.6、NetEQ的播放机制 3.7、MCU的控制机制 3.8、DSP的算法处理 3.9、DSP算法的模拟测试 4、NetEQ源文件…

dubbo-admin安装

一、dubbo-admin安装 1、环境准备 dubbo-admin 是一个前后端分离的项目。前端使用vue,后端使用springboot,安装 dubbo-admin 其实就是部署该项目。我们将dubbo-admin安装到开发环境上。要保证开发环境有jdk,maven,nodejs 安装no…

GaussDB for openGauss部署形态

前言 华为云数据库GaussDB是华为自主创新研发的分布式关系型数据库,具有高性能、高可用、高安全、低成本的特点,本文带你详细了解GaussDB数据库的部署形态。 1、GaussDB部署形态三种类型 GaussDB部署形态:单机 独立部署是将数据库组件部署…

VS2022更换背景壁纸逐步图示教程

🦄个人主页:修修修也 ⚙️操作环境:Visual Studio 2022 目录 一.下载壁纸插件 二.更改自定义壁纸 三.调整壁纸布局 一.下载壁纸插件 因为更改自定义壁纸需要一个插件的辅助,所以我们要先下载一个小插件 首先,打开VS2022,点击"扩展"->"管理扩…

在Js中如何实现文本朗读即文字转语音功能实现

前言 平时在做项目的过程中,有遇到场景是客户要求播放语音的场景,比如:无障碍朗读,整篇文章实现朗读,文字转语音,文字转语音播放等等。 在不使用第三方API接口的情况下,这里需要js来实现文字转语音播放的功能。能想到的也就是利用html5的个API&#xff1…

数据分析入门

B站:01第一课 数据分析岗位职责和数据分析师_哔哩哔哩_bilibili 一、岗位:数据分析师 Q1 数据分析师在公司做什么工作? 数据来源于公司核心业务,通过监测业务健康度来确定业务的健康状况; 通过对用户精细化分析&am…

vue3 + axios 中断取消接口请求

前言 最近开发过程中,总是遇到想把正在请求的axios接口取消,这种情况有很多应用场景,举几个例子: 弹窗中接口请求返回图片,用于前端展示,接口还没返回数据,此时关闭弹窗,需要中断接…

【网络】网络编程套接字(一)

网络编程套接字 一 一、网络编程中的一些基础知识1、认识端口号2、认识TCP协议和UDP协议3、网络字节序 二、socket编程1、sockaddr结构2、简单的UDP网络程序Ⅰ、服务器的创建Ⅱ、运行服务器Ⅲ、关于客户端的绑定问题Ⅳ、启动客户端Ⅴ、本地测试Ⅵ、网络测试 一、网络编程中的一…