使用轮廓分数提升时间序列聚类的表现

我们将使用轮廓分数和一些距离指标来执行时间序列聚类实验,并且进行可视化

让我们看看下面的时间序列:

如果沿着y轴移动序列添加随机噪声,并随机化这些序列,那么它们几乎无法分辨,如下图所示-现在很难将时间序列列分组为簇:

上面的图表是使用以下脚本创建的:

 # Import necessary librariesimport osimport pandas as pdimport numpy as np# Import random module with an alias 'rand'import random as randfrom scipy import signal# Import the matplotlib library for plottingimport matplotlib.pyplot as plt# Generate an array 'x' ranging from 0 to 5*pi with a step of 0.1x = np.arange(0, 5*np.pi, 0.1)# Generate square, sawtooth, sin, and cos waves based on 'x'y_square = signal.square(np.pi * x)y_sawtooth = signal.sawtooth(np.pi * x)y_sin = np.sin(x)y_cos = np.cos(x)# Create a DataFrame 'df_waves' to store the waveformsdf_waves = pd.DataFrame([x, y_sawtooth, y_square, y_sin, y_cos]).transpose()# Rename the columns of the DataFrame for claritydf_waves = df_waves.rename(columns={0: 'time',1: 'sawtooth',2: 'square',3: 'sin',4: 'cos'})# Plot the original waveforms against timedf_waves.plot(x='time', legend=False)plt.show()# Add noise to the waveforms and plot them againfor col in df_waves.columns:if col != 'time':for i in range(1, 10):# Add noise to each waveform based on 'i' and a random valuedf_waves['{}_{}'.format(col, i)] = df_waves[col].apply(lambda x: x + i + rand.random() * 0.25 * i)# Plot the waveforms with added noise against timedf_waves.plot(x='time', legend=False)plt.show()

现在我们需要确定聚类的基础。这里有两种方法:

把接近于一组的波形分组——较低欧几里得距离的波形将聚在一起。

把看起来相似的波形分组——它们有相似的形状,但欧几里得距离可能不低

距离度量

一般来说,我们希望根据形状对时间序列进行分组,对于这样的聚类-可能希望使用距离度量,如相关性,这些度量或多或少与波形的线性移位无关。

让我们看看上面定义的带有噪声的波形对之间的欧几里得距离和相关性的热图:

可以看到欧几里得距离对波形进行分组是很困难的,因为任何一组波形对的模式都是相似的。例如,除了对角线元素外,square & cos之间的相关形状与square和square之间的相关形状非常相似

所有的形状都可以很容易地使用相关热图组合在一起——因为类似的波形具有非常高的相关性(sin-sin对),而像sin和cos这样的波形几乎没有相关性。

轮廓分数

通过上面热图和分析,根据高相关性分配组看起来是一个好主意,但是我们如何定义相关阈值呢?看起来像一个迭代过程,容易出现不准确和大量的人工工作。

在这种情况下,我们可以使用轮廓分数(Silhouette score),它为执行的聚类分配一个分数。我们的目标是使轮廓分数最大化。

轮廓分数(Silhouette Score)是一种用于评估聚类质量的指标,它可以帮助你确定数据点是否被正确地分配到它们的簇中。较高的轮廓分数表示簇内数据点相互之间更加相似,而不同簇之间的数据点差异更大,这通常是良好的聚类结果。

轮廓分数的计算方法如下:

  1. 对于每个数据点 i,计算以下两个值:- a(i):数据点 i 到同一簇中所有其他点的平均距离(簇内平均距离)。- b(i):数据点 i 到与其不同簇中的所有簇的平均距离,取最小值(最近簇的平均距离)。
  2. 然后,计算每个数据点的轮廓系数 s(i),它定义为:s(i) = \frac{b(i) - a(i)}{\max{a(i), b(i)}}
  3. 最后,计算整个数据集的轮廓分数,它是所有数据点的轮廓系数的平均值:\text{轮廓分数} = \frac{1}{N} \sum_{i=1}^{N} s(i)

其中,N 是数据点的总数。

轮廓分数的取值范围在 -1 到 1 之间,具体含义如下:

  • 轮廓分数接近1:表示簇内数据点相似度高,不同簇之间的差异很大,是一个好的聚类结果。
  • 轮廓分数接近0:表示数据点在簇内的相似度与簇间的差异相当,可能是重叠的聚类或者不明显的聚类。
  • 轮廓分数接近-1:表示数据点更适合分配到其他簇,不同簇之间的差异相比簇内差异更小,通常是一个糟糕的聚类结果。

一些重要的知识点:

在所有点上的高平均轮廓分数(接近1)表明簇的定义良好且明显。

低或负的平均轮廓分数(接近-1)表明重叠或形成不良的集群。

0左右的分数表示该点位于两个簇的边界上。

聚类

现在让我们尝试对时间序列进行分组。我们已经知道存在四种不同的波形,因此理想情况下应该有四个簇。

欧氏距离

 pca = decomposition.PCA(n_components=2)pca.fit(df_man_dist_euc)df_fc_cleaned_reduced_euc = pd.DataFrame(pca.transform(df_man_dist_euc).transpose(), index = ['PC_1','PC_2'],columns = df_man_dist_euc.transpose().columns)index = 0range_n_clusters = [2, 3, 4, 5, 6, 7, 8]# Iterate over different cluster numbersfor n_clusters in range_n_clusters:# Create a subplot with silhouette plot and cluster visualizationfig, (ax1, ax2) = plt.subplots(1, 2)fig.set_size_inches(15, 7)# Set the x and y axis limits for the silhouette plotax1.set_xlim([-0.1, 1])ax1.set_ylim([0, len(df_man_dist_euc) + (n_clusters + 1) * 10])# Initialize the KMeans clusterer with n_clusters and random seedclusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10)cluster_labels = clusterer.fit_predict(df_man_dist_euc)# Calculate silhouette score for the current cluster configurationsilhouette_avg = silhouette_score(df_man_dist_euc, cluster_labels)print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg)sil_score_results.loc[index, ['number_of_clusters', 'Euclidean']] = [n_clusters, silhouette_avg]index += 1# Calculate silhouette values for each samplesample_silhouette_values = silhouette_samples(df_man_dist_euc, cluster_labels)y_lower = 10# Plot the silhouette plotfor i in range(n_clusters):# Aggregate silhouette scores for samples in the cluster and sort themith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]ith_cluster_silhouette_values.sort()# Set the y_upper value for the silhouette plotsize_cluster_i = ith_cluster_silhouette_values.shape[0]y_upper = y_lower + size_cluster_icolor = cm.nipy_spectral(float(i) / n_clusters)# Fill silhouette plot for the current clusterax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7)# Label the silhouette plot with cluster numbersax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))y_lower = y_upper + 10  # Update y_lower for the next plot# Set labels and title for the silhouette plotax1.set_title("The silhouette plot for the various clusters.")ax1.set_xlabel("The silhouette coefficient values")ax1.set_ylabel("Cluster label")# Add vertical line for the average silhouette scoreax1.axvline(x=silhouette_avg, color="red", linestyle="--")ax1.set_yticks([])  # Clear the yaxis labels / ticksax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])# Plot the actual clusterscolors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)ax2.scatter(df_fc_cleaned_reduced_euc.transpose().iloc[:, 0], df_fc_cleaned_reduced_euc.transpose().iloc[:, 1],marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k")# Label the clusters and cluster centerscenters = clusterer.cluster_centers_ax2.scatter(centers[:, 0], centers[:, 1], marker="o", c="white", alpha=1, s=200, edgecolor="k")for i, c in enumerate(centers):ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")# Set labels and title for the cluster visualizationax2.set_title("The visualization of the clustered data.")ax2.set_xlabel("Feature space for the 1st feature")ax2.set_ylabel("Feature space for the 2nd feature")# Set the super title for the whole plotplt.suptitle("Silhouette analysis for KMeans clustering on sample data with n_clusters = %d" % n_clusters,fontsize=14, fontweight="bold")plt.savefig('sil_score_eucl.png')plt.show()

可以看到无论分成多少簇,数据都是混合的,并不能为任何数量的簇提供良好的轮廓分数。这与我们基于欧几里得距离热图的初步评估的预期一致

相关性

 pca = decomposition.PCA(n_components=2)pca.fit(df_man_dist_corr)df_fc_cleaned_reduced_corr = pd.DataFrame(pca.transform(df_man_dist_corr).transpose(), index = ['PC_1','PC_2'],columns = df_man_dist_corr.transpose().columns)index=0range_n_clusters = [2,3,4,5,6,7,8]for n_clusters in range_n_clusters:# Create a subplot with 1 row and 2 columnsfig, (ax1, ax2) = plt.subplots(1, 2)fig.set_size_inches(15, 7)# The 1st subplot is the silhouette plot# The silhouette coefficient can range from -1, 1 but in this example all# lie within [-0.1, 1]ax1.set_xlim([-0.1, 1])# The (n_clusters+1)*10 is for inserting blank space between silhouette# plots of individual clusters, to demarcate them clearly.ax1.set_ylim([0, len(df_man_dist_corr) + (n_clusters + 1) * 10])# Initialize the clusterer with n_clusters value and a random generator# seed of 10 for reproducibility.clusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10)cluster_labels = clusterer.fit_predict(df_man_dist_corr)# The silhouette_score gives the average value for all the samples.# This gives a perspective into the density and separation of the formed# clusterssilhouette_avg = silhouette_score(df_man_dist_corr, cluster_labels)print("For n_clusters =",n_clusters,"The average silhouette_score is :",silhouette_avg,)sil_score_results.loc[index,['number_of_clusters','corrlidean']] = [n_clusters,silhouette_avg]index=index+1sample_silhouette_values = silhouette_samples(df_man_dist_corr, cluster_labels)y_lower = 10for i in range(n_clusters):# Aggregate the silhouette scores for samples belonging to# cluster i, and sort themith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]ith_cluster_silhouette_values.sort()size_cluster_i = ith_cluster_silhouette_values.shape[0]y_upper = y_lower + size_cluster_icolor = cm.nipy_spectral(float(i) / n_clusters)ax1.fill_betweenx(np.arange(y_lower, y_upper),0,ith_cluster_silhouette_values,facecolor=color,edgecolor=color,alpha=0.7,)# Label the silhouette plots with their cluster numbers at the middleax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))# Compute the new y_lower for next ploty_lower = y_upper + 10  # 10 for the 0 samplesax1.set_title("The silhouette plot for the various clusters.")ax1.set_xlabel("The silhouette coefficient values")ax1.set_ylabel("Cluster label")# The vertical line for average silhouette score of all the valuesax1.axvline(x=silhouette_avg, color="red", linestyle="--")ax1.set_yticks([])  # Clear the yaxis labels / ticksax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])# 2nd Plot showing the actual clusters formedcolors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)ax2.scatter(df_fc_cleaned_reduced_corr.transpose().iloc[:, 0], df_fc_cleaned_reduced_corr.transpose().iloc[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k")#     for i in range(len(df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 0])):#                         ax2.annotate(list(df_fc_cleaned_cleaned_reduced.transpose().index)[i], #                                      (df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 0][i], #                                       df_fc_cleaned_cleaned_reduced.transpose().iloc[:, 1][i] + 0.2))# Labeling the clusterscenters = clusterer.cluster_centers_# Draw white circles at cluster centersax2.scatter(centers[:, 0],centers[:, 1],marker="o",c="white",alpha=1,s=200,edgecolor="k",)for i, c in enumerate(centers):ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")ax2.set_title("The visualization of the clustered data.")ax2.set_xlabel("Feature space for the 1st feature")ax2.set_ylabel("Feature space for the 2nd feature")plt.suptitle("Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"% n_clusters,fontsize=14,fontweight="bold",)plt.show()

当选择的簇数为4时,我们可以清楚地看到分离的簇,其他结果通常比欧氏距离要好得多。

欧几里得距离与相关廓形评分的比较

轮廓分数表明基于相关性的距离矩阵在簇数为4时效果最好,而在欧氏距离的情况下效果就不那么明显了结论

总结

在本文中,我们研究了如何使用欧几里得距离和相关度量执行时间序列聚类,并观察了这两种情况下的结果如何变化。如果我们在评估聚类时结合Silhouette,我们可以使聚类步骤更加客观,因为它提供了一种很好的直观方式来查看聚类的分离情况。

https://avoid.overfit.cn/post/939876c1609140ac803b86209d8ee7ab

作者:Girish Dev Kumar Chaurasiya

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/110895.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java_Jdbc

目录 一.JDBC概述 二.JDBC API 三.ResultSet[结果集] 四.Statement 五.PreparedStatement 六. JDBC API 总结 一.JDBC概述 JDBC 为访问不同的数据库提供了同一的接口,为使用着屏蔽了细节问题Java程序员使用JDBC 可以连接任何提供了 JDBC驱动的数据库系统&am…

【ES实战】ES主副分片数据不一致分析

ES主副分片数据不一致分析 文章目录 ES主副分片数据不一致分析问题描述问题重现问题分析修复方案 问题描述 在请求索引中的某一条数据时,时而查询有结果,时而无结果。两种情况交替出现。 问题重现 通过对问题数据的点查,确实重现了该现象 …

Redis常见面试题总结

Redis(Remote Dictionary Server) 由Salvator Sanfilippo在2009年开源的使用 ANSI C 语言编写、高性能、遵守 BSD 协议、支持网络、可基于内存亦可持久化的日志型、Key-Value 数据库,并提供多种语言的 API 的非关系型数据库。 与传统数据库不同的是 Redis 的数据是存…

智能电表的功率计算方式是一样的吗?

随着科技的发展,智能电表已经成为了家庭和企业用电的必备设备。智能电表不仅可以实现用电量的监测和控制,还可以对用电负荷进行管理和优化。在智能电表的使用过程中,功率计算是一个重要的环节。那么,智能电表的功率计算方式是一样…

王兴投资5G小基站

边缘计算社区获悉,近期深圳佳贤通信正式完成数亿元股权融资,本轮融资由美团龙珠领投。本轮融资资金主要用于技术研发、市场拓展等,将进一步巩固和扩大佳贤通信在5G小基站领域的技术及市场领先地位。 01 佳贤通信是什么样的公司? 深…

【神印王座】伊莱克斯正式登场,皓晨通过永恒试炼,喜提两外挂,采儿丧失四感

Hello,小伙伴们,我是小郑继续为大家深度解析国漫资讯。 神印王座动画更新,龙皓晨在雅婷与皓月的帮助下,两次探索悲啸洞穴后成功闯入永恒之塔。在第78集预告中,伊莱克斯闪亮登场,皓晨通过永恒试炼成为新一代死灵圣法师&…

开发小经验积累

今天使用langchain官方文档上的这个包的时候 遇到了这个报错 这个直觉判断肯定是版本问题,我先是去perplexity.ai搜了相关报错 后来没找到什么比较好的回答 这时候想到可以去看当前自己用的版本的langchain的源码,而利用vscode强大的功能,…

HarmonyOS/OpenHarmony原生应用-ArkTS万能卡片组件Slider

滑动条组件,通常用于快速调节设置值,如音量调节、亮度调节等应用场景。该组件从API Version 7开始支持。无子组件 一、接口 Slider(options?: {value?: number, min?: number, max?: number, step?: number, style?: SliderStyle, direction?: Ax…

【Linux】如何判断RS-232串口是否能正常使用

1.RS-232串口短接 使用RS-232协议的串口引脚一般如图下所示 为了让串口能够接收到自己发出的串口数据,需要将输出端和输入端(RXD和TXD)进行短接操作: 短接完成后,才能实现自发自收的功能(走其他协议的串口清…

CUDA编程入门系列(二) GPU硬件架构综述

一、Fermi GPU Fermi GPU如下图所示,由16个SM(stream multiprocessor)组成,不同的SM之间通过L2 Cache和全局内存进行相连。整个架构大致分为两个层次,①总体架构由多个SM组成 ②每个SM由多个SP core(stream…

springMVC中统一异常处理@ControllerAdvice

1.在DispatcherServlet中初始化HandlerExceptionResolver 2.controller执行完成后执行processDispatchResult(processedRequest,response,mappedHandler,mv,dispatchException),有异常则处理异常 3.ExcepitonHandlerExceptionResolver中执行方法doResolveHandlerMethodExceptio…

JavaScript从入门到精通系列第二十一篇:JavaScript中的原型对象详解

文章目录 前言 一:原型对象 1:什么是原型对象 2:原型对象的作用 3:通过原型对象实现工厂方法 二:原型对象咋说 1:in和原型对象 2:hasOwnProperty()函数 3:hasOwnProperty()来…

竞赛选题 深度学习二维码识别

文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 🔥 优质竞赛项目系列,今天…

PyTorch 模型性能分析和优化 - 第 6 部分

玩具模型 为了方便我们的讨论,我们使用流行的 timm python 模块(版本 0.9.7)定义了一个简单的基于 Vision Transformer (ViT) 的分类模型。我们将模型的 patch_drop_rate 标志设置为 0.5,这会导致模型在每个训练步骤中随机丢弃一半…

基于Qt QSpinBox 微调框小案例

修改微调框数值的方式包括: 单击右侧的向上/向下按钮 按键盘的向上/向下键 在微调框获取焦点时,通过鼠标滚轮的上下滚动 当然了,也允许用户手动输入 其中: QSpinBox - 用于整数的显示和输入 QDoubleSpinBox - 用于浮点数的显示和输入 它们都是 QAbstractSpinBox 的子类,具…

线程安全之锁的原理

🔥🔥 欢迎来到小林的博客!!       🛰️博客主页:✈️林 子       🛰️博客专栏:✈️ Linux       🛰️社区 :✈️ 进步学堂       &#x1f6f0…

1019hw

登录窗口头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QToolBar> #include <QMenuBar> #include <QPushButton> #include <QStatusBar> #include <QLabel> #include <QDockWidget>//浮动窗口…

node+vue+mysql后台管理系统

千千博客系统&#xff0c;该项目作为一套多功能的后台框架模板&#xff0c;适用于绝大部分的后台管理系统开发。基于 vue.js&#xff0c;使用 vue-cli3 脚手架&#xff0c;引用 Element UI 组件库&#xff0c;数据库直连mysql方便开发快速简洁好看的组件。 功能包含如下&#…

UGUI交互组件InputField

一.InputField的结构 对象说明InputField挂有TextMeshPro-InputField组件的主体对象Text Area文本显示区Placeholder未输入时占位文本Enter text...Text输入的显示文本 二.InputField的属性 属性说明Text ViewportText Area子对象的引用Text ComponentText子对象的引用Text输入…

OpenP2P实现内网穿透远程办公

OpenP2P是一个开源、免费、轻量级的P2P共享网络。你的设备将组成一个私有P2P网络&#xff0c;里面的设备可以直接访问其它成员&#xff0c;或者通过其它成员转发数据间接访问。如果私有网络无法完成通信&#xff0c;将会到公有P2P网络寻找共享节点协助通信。 相比BT网络用来共享…