【OpenVINO】OpenVINO C# API 常用 API 详解与演示

OpenVINO C# API 常用 API 详解与演示

  • 1 安装OpenVINO C# API
    • 2 导入程序集
  • 3 初始化OpenVINO 运行时内核
  • 4 加载并获取模型信息
    • 4.1 加载模型
    • 4.2 获取模型信息
  • 5 编译模型并创建推理请求
  • 6 张量Tensor
    • 6.1 张量的获取与设置
    • 6.2 张量的信息获取与设置
  • 7 加载推理数据
    • 7.1 获取输入张量
    • 7.2 添加推理数据
  • 8 模型推理
  • 9 获取推理结果
  • 10 释放分配的内存
  • 11 Yolov8分类模型示例
  • 12 总结

  OpenVINO™ 工具套件可以加快深度学习视觉应用开发速度,帮助用户在从边缘到云的各种英特尔平台上,更加方便快捷的将 AI 模型部署到生产系统中。OpenVINO™ 2023.1 LTS 版本现已发布,可帮助你快速轻松地开发卓越的人工智能应用,并跨边缘和云端部署深度学习推理工作负载,无论你处于人工智能编程的什么阶段。
  C# 是由 C 和 C++ 衍生出来的一种安全的、稳定的、简单的、优雅的面向对象编程语言,它综合了 VB 简单的可视化操作和 C++ 的高运行效率,成为支持成为.NET 开发的首选语言。作为人工智能开发人员,如果你希望在 C# 端使用 OpenVINO™ ,OpenVINO C# API将是你的首选,并且制作了 NuGet 程序包,实现在 C# 端了一站式安装与使用 OpenVINO™ 。
  项目的首发网址:OpenVINO™ C# API 详解与演示 | 开发者实战。
  OpenVINO C# API在制作时参考了OpenVINO™ C++ API,因此对于之前使用过OpenVINO™ 的人十分友好。下面表格向我们展示了 C# 与 C++ API的对应关系

ClassC++ APIC# API说明
Core classov::CoreCoreOpenVINO运行时核心实体类
Model classov::ModelModel用户自定义模型类
CompiledModel classov::CompiledModelCompiledModel已编译的模型类
Output classov:: Output<ov::Node>Output节点输出的句柄类
Input classov:: Input<ov::Node>Input节点输入的句柄类
InferRequest classov::InferRequestov::InferRequest以异步或同步方式运行推断请求的类
Tensor classov::TensorTensor张量
Shape classov::ShapeShape张量的形状类

  在本文中,将会根据模型部署的一般步骤,演示从模型加载到推理的方法函数使用方式,并于C++ API 做对比。

1 安装OpenVINO C# API

  OpenVINO C# API 支持 NuGet 程序包安装方式,这与在C++中安装过程相比,较为简单,并且程序包中包含了最新版的 OpenVINO™ 2023.1 发行版本的 Release,可以通 过 NuGet 安装后直接使用。

  如果使用Visual Studio 编译该项目,则可以通过 NuGet 程序包管理功能直接安装即可:

在这里插入图片描述

  如果通过dotnet命令方式安装,通过下面语句进行安装即可:

dotnet add package OpenVINO.CSharp.win

2 导入程序集

  OpenVINO C# API 程序集全部在CSharp命名空间下,因此若要使用 OpenVINO C# API,需要先引入命名空间:

using OpenVinoSharp;

3 初始化OpenVINO 运行时内核

  Core类代表一个OpenVINO运行时核心实体,后续的读取模型、加载模型等方法都需要通过 Core 类进行创建,在封装C# API 时,为了与 C++ API 对应,也对 Core 类进行了封装,并封装了与 C++ API 中对应的方法

在C#中的初始化方式:

Core core = new Core();

在C++中的初始化方式:

ov::Core core;

4 加载并获取模型信息

4.1 加载模型

  OpenVINO™ 2022.1版本更新之后,加载,下面是所使用的 API 方法:

API作用
Core.read_model ()将模型从硬盘载入内存,并返回Model对象。

在C#中加载模型的方式:

Model model = core.read_model(model_path);

在C++中的初始化方式:

std::shared_ptr<ov::Model> model = core.read_model(model_path);

4.2 获取模型信息

  通过 Core.read_model ()方法获得的 Model 对象和通过 Core.compile_model ()方法获得的 CompiledModel 对象,都支持直接访问属性获取输入与输出层信息。以Model对象获取模型信息为例,下面是所使用的 API 方法:

API作用
Model.get_friendly_name()获取模型的friendly name。
Model.input()获取模型的输入层,并返回 Input对象。
Model.output()获取模型的输出层,并返回 Output对象。

  Input/Output 主要是封装了模型网络层,可以通过下面 API 实现获取模型的详细信息:

API作用
Output.get_any_name()获取模型网络层的名字。
Output.get_element_type()获取模型网络层的数据类型,并返回 OvType对象,OvType主要封装了网络的基本数据类型。
Output.get_shape()获取模型网络层的形状,并返回 Shape对象,Shape封装了网络层的形状数组。

  在 C# 中通过下方代码,可以直接获取模型的输入、输入层以及模型的friendly name:

string model_name = model.get_friendly_name();
Input input = model.input();
Output output = model.output();

  然后将模型具体信息打印到控制台页面:

Console.WriteLine("Model name: {0}", model_name);
Console.WriteLine("/------- [In] -------/");
Console.WriteLine("Input name: {0}", input.get_any_name());
Console.WriteLine("Input type: {0}", input.get_element_type().to_string());
Console.WriteLine("Input shape: {0}", input.get_shape().to_string());
Console.WriteLine("/------- [Out] -------/");
Console.WriteLine("Output name: {0}", output.get_any_name());
Console.WriteLine("Output type: {0}", output.get_element_type().to_string());
Console.WriteLine("Output shape: {0}", output.get_shape().to_string());

  获取模型网络层信息如下:

Model name: torch_jit
/------- [In] -------/
Input name: data
Input type: float
Input shape: [1,3,224,224]
/------- [Out] -------/
Output name: prob
Output type: float
Output shape: [1,1000]

  同样的输出信息,我们使用 C++ API 实现如下:

std::cout << "Model name: " << model->get_friendly_name() << std::endl;
ov::Output<ov::Node> input = model->input();
std::cout << "/------- [In] -------/" << std::endl;
std::cout << "Input name: " << input.get_any_name() << std::endl;
std::cout << "Input type: " << input.get_element_type().c_type_string() << std::endl;
std::cout << "Input shape: " << input.get_shape().to_string() << std::endl;
ov::Output<ov::Node> output = model->output();
std::cout << "/------- [Out] -------/" << std::endl;
std::cout << "Output name: " << output.get_any_name() << std::endl;
std::cout << "Output type: " << output.get_element_type().c_type_string() << std::endl;
std::cout << "Output shape: " << output.get_shape().to_string() << std::endl;

5 编译模型并创建推理请求

  在读取本地模型后,调用模型编译方法将模型编译为可以在目标设备上执行的 compile_model 对象,并通过该对象创建用于推断已编译模型的推断请求对象。下面是所使用的 API 方法:

API作用
Core.compile_model()将模型编译为可以在目标设备上执行的 compile_model 对象。
CompiledModel.create_infer_request()创建用于推断已编译模型的推断请求对象,创建的请求已经分配了输入和输出张量。

  在 C# 中编译模型并创建推理请求的方式:

CompiledModel compiled_model = core.compile_model(model, "AUTO");
InferRequest infer_request = compiled_model.create_infer_request();

  使用C++ API中编译模型并创建推理请求的方式:

CompiledModel compiled_model = core.compile_model(model, "AUTO");
InferRequest infer_request = compiled_model.create_infer_request();

6 张量Tensor

6.1 张量的获取与设置

  在创建推理请求后,系统会自动创建和分配输入和输出的张量,张量可以通过InferRequest 对象获得,并且可以自定义张量并加载到模型指定节点;可以根据张量的输入输出序号、名称以及模型节点Node对象获取和设置,主要C# API 如下:

API作用
InferRequest.set_tensor()设置要推断的输入/输出张量。
InferRequest.set_input_tensor()设置要推断的输入张量。
InferRequest.set_output_tensor()设置要推断的输出张量
InferRequest.get_tensor()获取用于推理的输入/输出张量。
InferRequest.get_input_tensor()获取用于推理的输入张量。
InferRequest.get_output_tensor()获取用于推理的输出张量。

6.2 张量的信息获取与设置

  张量中主要包含的信息有张量的形状(Shape)、张量的数据格式(OvType-> element.Type)以及张量中的内存数据。可以通过以下API方法操作张量的参数:

API作用
Tensor.set_shape ()给张量设置一个新的形状。
Tensor.get_shape()获取张量的形状。
Tensor.get_element_type()获取张量的数据类型。
Tensor.get_size()获取张量的数据长度。
Tensor.get_byte_size()获取张量的字节大小。
Tensor.data()获取张量的内存地址。
Tensor.set_data()将指定类型的数据加载到张量内存下。
Tensor.get_data()从张量中读取指定类型的数据。

  以上方法是对张量的一些基础操作,除了set_data、get_data是OpenVINO C# API独有的,其他接口都与C++API一致。

7 加载推理数据

7.1 获取输入张量

  对于单输入的模型可以直接通过get_input_tensor()方法获得,并调用Tensor的相关方法获取Tensor的相关信息,C# 代码如下所示:

Tensor input_tensor = infer_request.get_input_tensor();
Console.WriteLine("/------- [Input tensor] -------/");
Console.WriteLine("Input tensor type: {0}", input_tensor.get_element_type().to_string());
Console.WriteLine("Input tensor shape: {0}", input_tensor.get_shape().to_string());
Console.WriteLine("Input tensor size: {0}", input_tensor.get_size());

获取输出结果为:

/------- [Input tensor] -------/
Input tensor type: f32
Input tensor shape: Shape : {1, 3, 224, 224}
Input tensor size: 150528

对于上述的同样输出内容,我们也可以通过C++ API 实现,C++ 代码如下:

ov::Tensor input_tensor = infer_request.get_input_tensor();
std::cout << "/------- [Input tensor] -------/" << std::endl;
std::cout << "Input tensor type: " << input_tensor.get_element_type().c_type_string() << std::endl;
std::cout << "Input tensor shape: " << input_tensor.get_shape().to_string() << std::endl;
std::cout << "Input tensor size: " << input_tensor.get_size() << std::endl;

7.2 添加推理数据

  这一步主要是将处理好的图片数据加载到Tensor数据内存中,OpenVINO的API中提供了访问内存地址的接口,可以获取数据内存首地址,不过为了更好的加载推理数据,我们此处封装了set_data()方法,可以实现将处理后的图片数据加载到数据内存上。在C#中的代码为:

Mat input_mat = new Mat();
Shape input_shape = input_tensor.get_shape();
long channels = input_shape[1];
long height = input_shape[2];
long width = input_shape[3];
float[] input_data = new float[channels * height * width];
Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);
input_tensor.set_data(input_data);

下面是在C++中实现上述功能的代码:

cv::Mat input_mat;
float* input_data = input_tensor.data<float>();
ov::Shape input_shape = input_tensor.get_shape();
size_t channels = input_shape[1];
size_t height = input_shape[2];
size_t width = input_shape[3];
for (size_t c = 0; c < channels; ++c) {for (size_t h = 0; h < height; ++h) {for (size_t w = 0; w < width; ++w) {input_data[c * height * width + h * width + w] = input_mat.at<cv::Vec<float, 3>>(h, w)[c];}}
}

8 模型推理

  在加载完推理数据后,就可以调用模型推理的API方法推理当前数据,主要使用到的API方法为:

API作用
InferRequest.infer()在同步模式下推断指定的输入。

  调用该方法也较为简单,只需要调用该API接口即可,在C#中的代码为:

infer_request.infer();

C++中的代码与C++中一致。

9 获取推理结果

  对于单输出的模型可以直接通过get_output_tensor()方法获得,并调用Tensor的相关方法获取Tensor的相关信息,C# 代码如下所示:

Tensor output_tensor = infer_request.get_output_tensor();
Console.WriteLine("/------- [Output tensor] -------/");
Console.WriteLine("Output tensor type: {0}", output_tensor.get_element_type().to_string());
Console.WriteLine("Output tensor shape: {0}", output_tensor.get_shape().to_string());
Console.WriteLine("Output tensor size: {0}", output_tensor.get_size());

  获取输出output_tensor信息为:

/------- [Output tensor] -------/
Output tensor type: f32
Output tensor shape: Shape : {1, 1000}
Output tensor size: 1000

  对于输出Tensor,我们只需要读取输出内存上的数据即可,此处我们封装了get_data()方法,可以直接获取输出内存上的数据,在C#中的代码为:

float[] result = output_tensor.get_data<float>(1000);

同样获取推理结果,在C++中的代码为:

const float* output_data = output_tensor.data<const float>();
float result[1000];
for (int i = 0; i < 1000; ++i) {result[i] = *output_data;output_data++;
}

  在获取结果后,后续的处理需要根据模型的输出类型做相应的处理。

10 释放分配的内存

  由于C#在封装时采用的C API 接口实现的,因此在C#中会产生较多的 非托管内存,若该对象出现循环重复创建,会导致过多的内存未释放导致内存泄漏,因此对于临时创建的对象在使用后要即使销毁,销毁方式也较为简单,只需要调用对象的dispose()方法即可。

output_tensor.dispose();
input_shape.dispose();
infer_request.dispose();
compiled_model.dispose();
input.dispose();
output.dispose();
model.dispose();
core.dispose();

11 Yolov8分类模型示例

  下面代码展示了Yolov8分类模型使用OpenVINO C# API API方法部署模型的完整代码:

using OpenCvSharp;
using OpenCvSharp.Dnn;
using OpenVinoSharp;
using System.Data;
using System.Runtime.InteropServices;
namespace test_openvino_csharp_api
{internal class Program{static void Main(string[] args){string model_path = "E:\\GitSpace\\ OpenVINO-CSharp-API \\model\\yolov8\\yolov8s-cls.xml";Core core = new Core(); // 初始化推理核心Model model = core.read_model(model_path); // 读取本地模型CompiledModel compiled_model = core.compile_model(model, "AUTO"); // 便哟模型到指定设备// 获取模型的输入输出信息Console.WriteLine("Model name: {0}", model.get_friendly_name());Input input = compiled_model.input();Console.WriteLine("/------- [In] -------/");Console.WriteLine("Input name: {0}", input.get_any_name());Console.WriteLine("Input type: {0}", input.get_element_type().to_string());Console.WriteLine("Input shape: {0}", input.get_shape().to_string());Output output = compiled_model.output();Console.WriteLine("/------- [Out] -------/");Console.WriteLine("Output name: {0}", output.get_any_name());Console.WriteLine("Output type: {0}", output.get_element_type().to_string());Console.WriteLine("Output shape: {0}", output.get_shape().to_string());// 创建推理请求InferRequest infer_request = compiled_model.create_infer_request();// 获取输入张量Tensor input_tensor = infer_request.get_input_tensor();Console.WriteLine("/------- [Input tensor] -------/");Console.WriteLine("Input tensor type: {0}", input_tensor.get_element_type().to_string());Console.WriteLine("Input tensor shape: {0}", input_tensor.get_shape().to_string());Console.WriteLine("Input tensor size: {0}", input_tensor.get_size());// 读取并处理输入数据Mat image = Cv2.ImRead(@"E:\GitSpace\ OpenVINO-CSharp-API \dataset\image\demo_7.jpg");Mat input_mat = new Mat();input_mat = CvDnn.BlobFromImage(image, 1.0 / 255.0, new Size(224, 224), 0, true, false);// 加载推理数据Shape input_shape = input_tensor.get_shape();long channels = input_shape[1];long height = input_shape[2];long width = input_shape[3];float[] input_data = new float[channels * height * width];Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);input_tensor.set_data(input_data);// 模型推理infer_request.infer(); // 获取输出张量Tensor output_tensor = infer_request.get_output_tensor();Console.WriteLine("/------- [Output tensor] -------/");Console.WriteLine("Output tensor type: {0}", output_tensor.get_element_type().to_string());Console.WriteLine("Output tensor shape: {0}", output_tensor.get_shape().to_string());Console.WriteLine("Output tensor size: {0}", output_tensor.get_size());// 获取输出数据float[] result = output_tensor.get_data<float>(1000);List<float[]> new_list = new List<float[]> { };for (int i = 0; i < result.Length; i++){new_list.Add(new float[] { (float)result[i], i });}new_list.Sort((a, b) => b[0].CompareTo(a[0]));KeyValuePair<int, float>[] cls = new KeyValuePair<int, float>[10];for (int i = 0; i < 10; ++i){cls[i] = new KeyValuePair<int, float>((int)new_list[i][1], new_list[i][0]);}Console.WriteLine("\n Classification Top 10 result : \n");Console.WriteLine("classid probability");Console.WriteLine("------- -----------");for (int i = 0; i < 10; ++i){Console.WriteLine("{0}   {1}", cls[i].Key.ToString("0"), cls[i].Value.ToString("0.000000"));}// 销毁非托管内存output_tensor.dispose();input_shape.dispose();infer_request.dispose();compiled_model.dispose();input.dispose();output.dispose();model.dispose();core.dispose();}}
}

12 总结

  在本文中我们基于模型推理流程,演示了OpenVINO C# API使用方法,并和OpenVINO C++API进行了对比,展示了OpenVINO C# API与C++API在使用的区别,这也对使用过C++ API的开发者十分友好,上手会十分容易。

  在本文中我们只展示了基础的模型推理流程代码,也对各个API进行了测试,针对其他比较高级的API方法,我们后续会继续进行测试其他API方法,向各位开发者展示其用法。

  总的来说,目前OpenVINO C# API已经完全支持在Windows环境下的安装使用,欢迎各位开发者安装使用,如有相关问题或优化方法,也欢迎大家提出意见与指导。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/109992.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

循环日程安排问题(分治法)

函数接口定义&#xff1a; void Plan(int a[][N],int k); 裁判测试程序样例&#xff1a; #include #include <math.h> #include using namespace std; #define N 100 void Plan(int a[][N],int k); int main() { int i,j,a[N][N],k,size; cin>>k; sizepow(2,k)…

金山终端安全系统V9.0 SQL注入漏洞复现

0x01 产品简介 金山终端安全系统是一款为企业提供终端防护的安全产品&#xff0c;针对恶意软件、病毒和外部攻击提供防范措施&#xff0c;帮助维护企业数据和网络。 0x02 漏洞概述 金山终端安全系统V9.0 /inter/update_software_info_v2.php页面存在sql注入漏洞&#xff0c;该…

VsCode通过Git History插件查看某个页面的版本修改记录

首先需要安装插件Git History 方式一&#xff1a;通过 点击File History 查看某个文件变更&#xff1b;即通过commit的提交记录去查看某个文件的修改 方式二&#xff1a;通过点击选择toggle File Blame 查看当前页面每一行所有提交修改记录

通讯协议学习之路:USART协议理论

通讯协议之路主要分为两部分&#xff0c;第一部分从理论上面讲解各类协议的通讯原理以及通讯格式&#xff0c;第二部分从具体运用上讲解各类通讯协议的具体应用方法。 后续文章会同时发表在个人博客(jason1016.club)、CSDN&#xff1b;视频会发布在bilibili(UID:399951374) 一、…

手机抬手亮屏解锁,用到了哪些硬件?

随着时代发展&#xff0c;智能手机以丰富的功能及便利性&#xff0c;成为了人们必不可少的物品&#xff0c;其中人脸解锁功能是非常有用的功能&#xff0c;广受年轻人的喜爱&#xff0c;那么你知道她是如何实现吗&#xff1f;今天凡小亿带你们探索&#xff01; 手机抬手亮屏解锁…

mysql—表单二

一、查询环境 1.创建student和score表 CREATE TABLE student ( id INT(10) NOT NULL UNIQUE PRIMARY KEY , name VARCHAR(20) NOT NULL , sex VARCHAR(4) , birth YEAR, department VARCHAR(20) , address VARCHAR(50) ); 创建score表。SQL代码如下&#xff1a; CR…

4-k8s-部署springboot项目简单实践

文章目录 一、部署原理图二、部署实践 一、部署原理图 部门一般都有一个属于自己的私服gitlab服务器&#xff0c;由开发者开发代码&#xff0c;然后上传到私服gitlab然后使用调度工具&#xff0c;如jenkins&#xff0c;去gitlab拉去代码&#xff0c;编译打包&#xff0c;最后得…

【ELK 使用指南 1】ELK + Filebeat 分布式日志管理平台部署

ELK和EFLK 一、前言1.1 日志分析的作用1.2 需要收集的日志1.3 完整日志系统的基本特征 二、ELK概述2.1 ELK简介2.2 为什么要用ELK?2.3 ELK的组件 三、ELK组件详解3.1 Logstash3.1.1 简介3.1.2 Logstash命令常用选项3.1.3 Logstash 的输入和输出流3.1.4 Logstash配置文件 3.2 E…

STM32 BootLoader设置

编写bootloader程序&#xff1a; 直接复制下面代码到自己程序中。 typedef void (*iapfun)(void); //定义一个函数类型的参数. iapfun jump2app; //设置栈顶地址 //addr:栈顶地址 __asm void MSR_MSP(u32 addr) {MSR MSP, r0 //set Main Stack valueBX r14 }//跳转到…

解决容器内deepspeed微调大模型报错

解决容器内deepspeed微调大模型报错&#xff1a;[launch.py:315:sigkill_handler] Killing subprocess 问题描述&#xff1a;解决办法 问题描述&#xff1a; 在容器中用deepspeed微调百川大模型2时&#xff0c;出现上述错误&#xff0c;错误是由于生成容器时&#xff0c;共享内…

七个开发者不可不知的VS Code小技巧

本文就来分享 7 个极大提高开发效率的 VS Code 技巧&#xff01; 目录 1.固定滚动&#xff08;Sticky Scroll&#xff09; 2.命令面板&#xff08;Command Palette&#xff09; 3.自定义代码片段&#xff08;Custom Snippets&#xff09; 4.文件查找&#xff08;File Finde…

SpringBoot实现SSMP整合

一、整合JUnit 1、Spring 整合 JUnit 核心注解有两个&#xff1a; RunWith(SpringJUnit4ClassRunner.class) 是设置Spring专用于测试的类运行器&#xff08;Spring程序执行程序有自己的一套独立的运行程序的方式&#xff0c;不能使用JUnit提供的类运行方式&#xff09;Conte…

十个面试排序算法

一、 前言 最常考的是快速排序和归并排序&#xff0c;并且经常有面试官要求现场写出这两种排序的代码。对这两种排序的代码一定要信手拈来才行。还有插入排序、冒泡排序、堆排序、基数排序、桶排序等。面试官对于这些排序可能会要求比较各自的优劣、各种算法的思想及其使用场景…

Kotlin中的比较运算符

在Kotlin中&#xff0c;我们可以使用比较运算符进行值的比较和判断。下面对Kotlin中的等于、不等于、小于、大于、小于等于和大于等于进行详细介绍&#xff0c;并提供示例代码。 等于运算符&#xff08;&#xff09;&#xff1a; 等于运算符用于判断两个值是否相等。如果两个值…

[Python中常用的回归模型算法大全:从线性回归到XGBoost]

文章目录 概要保序回归&#xff1a;理论与实践多项式回归&#xff1a;探索数据曲线关系多输出回归的示例 概要 在数据科学和机器学习领域&#xff0c;回归分析是一项关键任务&#xff0c;用于预测连续型变量的数值。除了传统的线性回归模型外&#xff0c;Python提供了丰富多样…

一文带你GO语言入门

什么是go语言? Go语言(又称Golang)是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言。Go语言的主要特点包括:- 简洁和简单 - 语法简单明快,易于学习和使用 特点 高效 编译速度快,执行效率高 并发支持 原生支持并发,利用goroutine实现高效的并发…

小程序canvas层级过高真机遮挡组件的解决办法

文章目录 问题发现真机调试问题分析问题解决改造代码效果展示 问题发现 在小程序开发中需要上传图片进行裁剪&#xff0c;在实际真机调试中发现canvas层遮挡住了生成图片的按钮。 问题代码 <import src"../we-cropper/we-cropper.wxml"></import> <…

面试总结分享:25道数据库测试题

1&#xff09;什么是数据库测试&#xff1f; 数据库测试也称为后端测试。数据库测试分为四个不同的类别。数据完整性测试 数据有效性测试 数据库相关的性能 测试功能&#xff0c;程序和触发器 2&#xff09;在数据库测试中&#xff0c;我们需要正常检查什么&#xff1f; 通常&a…

VBA技术资料MF71:查找所有空格并替换为固定字符

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的工作效率&#xff0c;而且可以提高数据的准确度。我的教程一共九套&#xff0c;分为初级、中级、高级三大部分。是对VBA的系统讲解&#xff0c;从简单的入门&#xff0c;到…

Typora +Picgo 搭建个人笔记

文章目录 Typora Picgo 搭建个人笔记一、Picgo Github 搭建图床1.基础设置2. 将配置导出&#xff0c;方便下次使用 二、Typora&#xff1a;设置 &#xff1a;1. 基本设置2. 导出自动提交3. 备份图片 Typora Picgo 搭建个人笔记 typora 下载地址&#xff1a; https://zahui.fan…