2020年亚太杯APMCM数学建模大赛B题美国总统的经济影响分析求解全过程文档及程序

2020年亚太杯APMCM数学建模大赛

B题 美国总统的经济影响分析

原题再现:

  美国总统选举每四年举行一次。 2020年是美国总统大选年,共和党候选人唐纳德·特朗普和民主党对手乔·拜登竞选总统。 甲乙双方候选人在金融贸易,经济金融治理,其他一些不同的重点发展领域(如COVID-19作战措施,基础设施,税收,环境保护,医疗保险,就业,贸易,移民,教育等)有不同的政治立场和行政方案。)。 不同候选人的当选将塑造全球经济和金融发展的不同战略模式,并对美国经济和全球经济(包括中国经济)产生更大的影响)。 不同的政策将如何影响美国经济和中国经济? 中国应该如何回应? 你的团队被要求收集候选人在不同领域的政策主张、政策指南和相关数据,并回答以下问题:
  1. 建立数学模型,并利用相关数据定量分析不同候选人对美国的可能影响经济。(你可以选择一个或几个领域分别回答这个问题或给出一个全面的答案)
  2. 建立数学模型,利用相关数据定量分析不同候选人对中国经济的可能影响。 (你可以选择一个或几个领域分别回答这个问题或给出一个全面的答案)
  3. 假设你是中国经济发展智库的成员,结合问题1和问题2的数学模型,在这两种情况下(哪一方获胜),你会对中国在相关领域的经济对策和政策提出什么建议)? 请具体说明你的观点。

整体求解过程概述(摘要)

  为了解决美国大选结果对中美经济的影响问题,本文利用拉格朗日插值和主成分分析对历史数据进行补充和约简,建立了基于BP神经网络的预测模型,并利用VAR模型分析了未来经济发展状况,并建立了基于多元线性回归的层次分析模型,对大选结果进行评价和分析。
  问题1需要对不同候选人的当选对美国经济的影响进行定量分析。通过比较两位候选人政策主张的异同,我们提取了相关政策指标来表达其对美国经济的影响,并收集了历史数据。对于缺失的数据,使用拉格朗日插值来完成原始数据。由于政策指标数量庞大,考虑对政策指标进行主成分分析,并建立基于BP神经网络的预测模型,利用主成分指标的历史数据预测未来4年的各种主成分指标。最后,利用VAR模型,利用主成分指标的预测值,计算出经济指标的预测价值,对美国未来经济发展进行分析。
  问题2是分析对中国经济的影响。假设只有两位候选人的对华政策会影响中国经济,提取四个对华政策指标,并根据问题1计算中国经济指标的预测值,分析中国未来的经济发展。
  问题3要求结合问题1和问题2的数学模型,提出特朗普和拜登当选时中国应该采取的经济对策。通过构建基于多元线性回归的层次分析模型,根据层次排序方法获得指标权重。结果显示,拜登的选举权重为0.51,而特朗普的选举权重则为0.49。二者差别不大,表明两位候选人的政策对中国经济的影响相似。在十大政策指标中,权重排名前三的是股价综合500指数、贸易逆差和进出口总额。这些指标主要与美国的金融和贸易政策相对应。针对这些政策,中国提出了适当的经济政策。
  本文的创新之处在于,根据疫情的影响调整BP神经网络的预测结果,使其更符合实际情况,并使用VAR模型来分析和确定未来经济发展状况。在层次分析法中,采用多元线性回归方法构造判断矩阵,避免了专家评分主观化的缺点。

模型假设:

  (1) 假设候选人上任后将执行已公布的政策主张。

  (2) 根据新冠肺炎疫苗的开发,假设疫情不会持续到下一任期结束。

  (3) 忽略非政策因素对中美经济的影响。

  (4) 假设BP神经网络的误差不影响经济模型的求解。

问题分析:

  问题一分析
  问题一需要建立数学模型,通过相关数据定量分析不同候选人的当选对美国经济的影响。
  首先,要比较分析两位候选人的政策建议的异同,主要包括新冠肺炎抗击措施、基础设施、税收、环保、医疗保险、就业、贸易、移民、教育等。
  其次,不同的候选人采取不同的政策主张会导致不同的经济发展条件。为了描述这种影响,为每项政策选择相应的相关政策指标,包括基础设施投资、税收收入、平均二氧化碳排放量、平均国内一般政府医疗支出、失业率、进出口总额、贸易赤字、股价500指数、国际移民总数和教育支出百分比。另一方面,为了定量判断经济发展状况,选取了国内生产总值、生产者价格指数、平均国民总收入等相关经济指标。收集这些指标的历史数据。
  第三,鉴于政策指标数量庞大,而且并非所有信息都是主要信息,因此对这些指标进行了主成分分析,以提取反映政策变化的综合指标,同时减少维度。
  第四,为了预测主成分指标,需要建立一个预测模型。鉴于BP神经网络的诸多优点,本文利用BP神经网络建立了预测模型,并利用历史数据对未来4年的各项主成分指标进行了预测。
  最后,仅仅根据历史数据预测经济指标并不能反映政策变化的影响。为了通过主成分指标的预测值来计算经济指标的预测价值,需要找到经济指标与主成分之间的关系。本文在VAR模型的基础上分析了两者之间的关系。然后将主成分指标的预测值代入模型,得到经济指标的预测价值,进而分析经济发展状况。

  问题二分析
  问题二需要建立数学模型,通过相关数据定量分析不同候选人当选对中国经济的影响。
  与问题1不同的是,在问题2中,只有两位候选人的对华政策会影响中国经济。因此,在问题2中,选择了与中国政策相关的指标来表征不同候选者对中国经济的影响,包括中国外贸货物吞吐量、美国对中国的进出口、美元兑人民币汇率和美国联邦基金利率。另一方面,为了定量判断中国经济的发展,选择中国进出口总额和关税作为衡量中国经济的指标。由于第一种分析方法与其他主成分分析方法相似,因此不需要提取主成分分析。

  问题三分析
  问题三要求结合问题1和问题2的数学模型,分别提出特朗普和拜登当选时中国应采取的经济对策。
  为了分析两位候选人当选后对中国经济的影响,本文采用基于多元线性回归的层次分析法模型来确定每项政策的影响权重和两位候选人对中国经济影响程度。为了避免层次分析法(AHP)的主观性,基于第一题和第二题的数据,采用多元线性回归方法确定判断矩阵。最后,根据层次排序的结果,分析了影响因素及对策。

模型的建立与求解整体论文缩略图 (多种解法和文档)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
clc;
clear;
%Parameter initialization
inputfile=xlsread('C:\Users\Admin\Desktop\DATA.xls',’raw data’); 
for i=1:size(inputfile,2)
index=i; 
data = inputfile(:,index);
la_data = ployinterp_column(data,'lagrange'); %Call Lagrange for interpolation
%The results are written to a file
rows = size(data,1);
result = cell(rows+1,2);
result{1,1}='original value';
result{1,2}='Lagrange interpolation';
result(2:end,1)= num2cell(data);
result(2:end,2)= num2cell(la_data);
xlswrite('C:\Users\Admin\Desktop\DATA.xls',’after data’);
end
ployinterp_column.m
function outputdata= ployinterp_column(columndata,type)
nans = isnan(columndata); 
notzeroIndexes = find(nans); 
%zeroIndexes = find(nans==0); 
rows=size(columndata); 
%currentValues=zeros(size(zeroIndexes));
for i=1:size(notzeroIndexes)pre5=findPre5(notzeroIndexes(i),columndata);last5=findLast5(notzeroIndexes(i),rows(1),columndata);[~,pre5cols]=size(pre5);[~,last5cols]=size(last5);if strcmp(type,'lagrange')missingValue=lagrange_interp([1:pre5cols,pre5cols+2:last5cols+pre5cols+1],...[pre5,last5],pre5cols+1); endcolumndata(notzeroIndexes(i),1)=missingValue;
end
outputdata=columndata;
end
function pre5=findPre5(index,columndata)
if index<=0disp('error');exit; 
end
num=5;
pre5=nan(1,5);
for i=index-1:-1:1if isnan(columndata(i))==0 pre5(num)=columndata(i);num=num-1;endif num==0 break;end
end
pre5=pre5(~isnan(pre5)); 
end
function last5=findLast5(index,rows,columndata)
if index<=0 || index>rowsdisp('error');exit; 
end
num=0;
last5=nan(1,5); 
for i=index+1:rowsif isnan(columndata(i))==0 num=num+1;last5(num)=columndata(i); endif num==5 break;end
end
last5=last5(~isnan(last5)); 
end
lagrange_interp,m
function [ yi ] = lagrange_interp (X,Y,xi)
n=length(X); 
m=length(xi); 
yi=zeros(size(xi));
for j=1:m for i=1:n 
temp=1; for k=1:nif(i~=k) temp=temp*(xi(j)-X(k))/(X(i)-X(k));endendyi(j)=Y(i)*temp+yi(j);end
end
end
function [error,R2,a] = BPTrain(index,num_neurons)
%% Input training set and test set
%Training set 1 (data from Obama's eight years in office)
Train1=xlsread('C:\Users\Admin\Desktop\ExportData.xls',' Training set 1');
%Training set 2 (data from Obama's 8 years + Trump's 4 years)
Train2=xlsread('C:\Users\ Admin \Desktop\ExportData.xls',' Training set 2);
%Test set (data from Trump's four years in power)
Test=xlsread('C:\Users\ Admin \Desktop\ExportData.xls',' Test set ');
% Prediction set
%PY=xlsread('C:\Users\ Admin \Desktop\ExportData.xls','Sheet2');
%P_Y=PY';
%py=mapminmax('apply',P_y,ps_input);
%Training set and Test set selection
P_train=Train2(:,1)';
T_train=Train2(:,index)';
P_test=Test(:,1)';
T_test=Test(:,index)';
%Data normalization 
[p_train, ps_input]=mapminmax(P_train,0,1);
[t_train, ps_output] = mapminmax(T_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
%Neural network creation
net=newff(P_train,T_train,num_neurons); %Number of hidden neurons
%Set training parameters
net.trainParam.epochs=1000; %Number of iterations
net.trainParam.goal=1e-3; %Training objectives
net.trainParam.lr=0.01; %Learning rate
%Training network 
[net,tr]=train(net,p_train,t_train);
%Simulation test
t_sim=sim(net,p_test);
% t_sim=sim(net,py);
%Data inverse normalization
T_sim=mapminmax('reverse',t_sim,ps_output);
%%Performance evaluation
%Relative error
error=abs(T_sim-T_test)./T_test;
%Coefficient of determination R2
R2=(size(T_test,2)*sum(T_sim.*T_test)-sum(T_sim)*sum(T_test))^2/((size(T_test,2)*sum((T_sim).^2)-
(sum(T_sim))^2)*(size(T_test,2) * sum((T_test).^2)-(sum(T_test))^2));
%Comparison of results
result=[T_test' T_sim' error'];
%Number of iterations
a=tr.num_epochs;
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/109527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python爬虫实战-京东商品数据

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 今天介绍一下如何用 Python 来批量获取京东商品信息&#xff01;&#xff01; 如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 第三方库: requests >>> pip install requests 开发环境: python 3.8 py…

【iOS】——用单例类封装网络请求

文章目录 一、JSONModel1.JSONModel的简单介绍2.JSONModel的使用 二、单例类和Block传值 一、JSONModel 1.JSONModel的简单介绍 JSONModel一个第三方库&#xff0c;这个库用来将网络请求到的JSON格式的数据转化成Foundation框架下的Model类的属性&#xff0c;这样我们就可以直…

Elasticsearch基础篇(五):创建es索引并学习分析器、过滤器、分词器的作用和配置

创建es索引并学习分析器、过滤器、分词器的作用和配置 一、基础概念Elasticsearch与MySQL的类比1. ES与MySQL的结构类比图2. ES与MySQL的类比示意表格3. 索引中重要概念索引&#xff08;Index&#xff09;文档&#xff08;Document&#xff09;字段&#xff08;Field&#xff0…

2023.10.18 区别 对象 和 类对象

目录 对象 类对象 总结 对象 对象是类的实例化结果它是内存中的一块区域&#xff0c;包含了该类的属性和方法的具体值和实现对象具有唯一的标识、状态、行为通过创建类的实例&#xff0c;我们可以在程序中操作和处理具体的对象 简单实例 class Person {public int high 1…

车载开发学习——CAN总线

CAN总线又称为汽车总线&#xff0c;全程为“控制器局域网&#xff08;Controller Area Network&#xff09;”&#xff0c;即区域网络控制器&#xff0c;它将区域内的单一控制单元以某种形式连接在一起&#xff0c;形成一个系统。在这个系统内&#xff0c;大家以一种大家都认可…

Netty系列教程之NIO基础知识

近30集的孙哥视频课程&#xff0c;看完一集整理一集来的&#xff0c;内容有点多&#xff0c;请大家放心食用~ 1. 网络通讯的演变 1.1 多线程版网络通讯 在传统的开发模式中&#xff0c;客户端发起一个 HTTP 请求的过程就是建立一个 socket 通信的过程&#xff0c;服务端在建立…

VR全景图片如何拍摄制作,拍摄制作过程中要注意什么?

引言&#xff1a; VR全景图片就是通过专业的相机设备捕捉到的一个空间的高清图像&#xff0c;再经过专业工具进行拼合&#xff0c;呈现出一种环绕式的视觉效果。想象一下&#xff0c;当你站在一个完全真实的环境中&#xff0c;可以自由地转动视角&#xff0c;看到四周的景色&a…

高数定理集合啦

haha~ 最近在准备数学竞赛&#xff0c;好久没有发布笔记啦&#xff0c;今天就来一波高数里常用的定理吧&#xff0c;不全面的话后续会更新哒~ 费马定理&#xff1a;对于一个函数的局部极值点&#xff0c;如果导数存在&#xff0c;那么导数在该点处必须为零&#xff0c;即 f(x)0…

SQL数据库管理工具RazorSQL mac中文版特点与功能

RazorSQL mac是一款功能强大的SQL数据库管理工具&#xff0c;它支持多种数据库&#xff0c;包括MySQL、Oracle、Microsoft SQL Server、SQLite、PostgreSQL等。 RazorSQL mac 软件特点和功能 多种数据库支持&#xff1a;RazorSQL支持多种数据库&#xff0c;用户可以通过一个工…

基于R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习高级应用

查看原文>>>【案例教程】基于R语言的Meta分析【全流程、不确定性分析】方法与Meta机器学习高级应用 Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析…

安装Elasticsearch步骤(包含遇到的问题及解决方案)

注&#xff1a;笔者是在centos云服务器环境下安装的Elasticsearch 目录 1.安装前准备 2.下载Elasticsearch 3.启动Elasticsearch 非常容易出问题 第一次运行时&#xff0c;可能出现如下错误&#xff1a; 一、内存不足原因启动失败 二、使用root用户启动问题 三、启动ES自…

uniapp使用uQRCode绘制二维码,下载到本地,调起微信扫一扫二维码核销

1.效果 2.在utils文件夹下创建uqrcode.js // uqrcode.js //--------------------------------------------------------------------- // github https://github.com/Sansnn/uQRCode //---------------------------------------------------------------------let uQRCode {…

第二证券:A股三季报披露全面启动 多领域上市公司业绩表现亮点纷呈

A股上市公司三季报宣告全面发动。Wind数据闪现&#xff0c;到10月17日记者发稿&#xff0c;来自沪深北三大交易所近80家上市公司首要晒出了最新运营效果体现的“效果单”。本周&#xff0c;相关财报宣告家数也将增至270家左右。与此同时&#xff0c;10月以来&#xff0c;亦有不…

怎么把图片改成jpg格式?

怎么把图片改成jpg格式&#xff1f;大家都知道&#xff0c;随着计算机被发明到现在已经存在了很多年&#xff0c;在这么多的的技术发展过程中&#xff0c;也形成了种类非常多的图片文件格式&#xff0c;例如平时我们能接触到的图片格式有jpg、png、gif、bmp、heic、tiff、jfif、…

vcpkg manifest 的使用

最近项目上要使用 CMakeLists 管理&#xff0c;由于 Windows 版本有依赖到 vcpkg 提供的库&#xff0c;所以需要使用 vcpkg manifest 来统一设置库的版本&#xff0c;方便后续维护 推荐一个文章&#xff0c;介绍的可以说是非常全面了 VCPKG 特性 - Versioning 不过里面也有一些…

C++标准库算法整理

目录 1、数值操作 1.1、std::accumulate 1.2、std::inner_product 1.3、std::partial_sum 1.4、std::exclusive_scan 1.5、std::inclusive_scan 1.6、std::reduce 2、相邻元素 2.1、std::adjacent_difference 2.2、std::adjacent_find 2.3、std::unique 2.4、std::u…

Apache HTTPD 换行解析漏洞(CVE-2017-15715)

Apache HTTPD是一款HTTP服务器&#xff0c;它可以通过mod_php来运行PHP网页。其2.4.0~2.4.29版本中存在 一个解析漏洞&#xff0c;在解析PHP时&#xff0c;1.php\x0a将被按照PHP后缀进行解析&#xff0c;导致绕过一些服务器的安全策略。 影响范围 apache &#xff1a;2.4.0~2.…

易点易动设备管理系统帮助生产企业提升设备巡检效率

在现代制造业中&#xff0c;设备的正常运行对于生产企业的成功至关重要。然而&#xff0c;设备巡检是确保设备安全性和可靠性的关键环节&#xff0c;但却常常耗费大量时间和资源。为了解决这个问题&#xff0c;许多企业采用了现代化的设备管理系统&#xff0c;其中易点易动设备…

山西电力市场日前价格预测【2023-10-19】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2023-10-19&#xff09;山西电力市场全天平均日前电价为210.83元/MWh。其中&#xff0c;最高日前电价为337.00元/MWh&#xff0c;预计出现在18: 30。最低日前电价为0.00元/MWh&#xff0c;预计出…

在Maven中配置代理服务器的详细教程

在Maven中配置代理服务器的详细教程如下&#xff1a; 首先&#xff0c;确保您已经安装了Maven。创建一个新的Maven项目。在命令行中输入以下命令&#xff1a; mvn archetype:generate -DgroupIdcom.example -DartifactIdmy-app -DarchetypeArtifactIdmaven-archetype-quickst…