排序【七大排序】

文章目录

  • 1. 排序的概念及引用
    • 1.1 排序的概念
    • 1.2 常见的排序算法
  • 2. 常见排序算法的实现
    • 2.1 插入排序
      • 2.1.1基本思想:
      • 2.1.2 直接插入排序
      • 2.1.3 希尔排序( 缩小增量排序 )
    • 2.2 选择排序
      • 2.2.1基本思想:
      • 2.2.2 直接选择排序:
      • 2.2.3 堆排序
    • 2.3 交换排序
      • 2.3.1冒泡排序
      • 2.3.2 快速排序
    • 2.4 归并排序
      • 2.4.1 基本思想
      • 2.4.2 海量数据的排序问题
  • 3. 排序算法复杂度及稳定性分析

1. 排序的概念及引用

1.1 排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持
不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
在这里插入图片描述
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

1.2 常见的排序算法

在这里插入图片描述

2. 常见排序算法的实现

2.1 插入排序

2.1.1基本思想:

直接插入排序是一种简单的插入排序法,其基本思想是:
把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。实际中我们玩扑克牌时,就用了插入排序的思想。

2.1.2 直接插入排序

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移

代码实现

public static void insertSort(int[] array){for (int i = 1; i < array.length; i++) {int tmp = array[i];int j = i-1;for (; j >= 0; j--) {if(array[j] > tmp){array[j+1] = array[j];}else{break;}}array[j+1] = tmp;}}

直接插入排序的特性总结

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1),它是一种稳定的排序算法
  4. 稳定性:稳定

2.1.3 希尔排序( 缩小增量排序 )

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成多个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。
在这里插入图片描述
代码实现

 public static void hillSort(int[] array){int gap = array.length;while(gap > 1){gap/=2;hill(array,gap);}}public static void hill(int[] array,int gap){for (int i = gap; i < array.length; i++) {int tmp = array[i];int j = i - gap;for (; j >= 0 ; j-=gap) {if(array[j] > tmp){array[j+gap] = array[j];}else {break;}}array[j+gap] = tmp;}}

希尔排序的特性总结

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定
  4. 稳定性:不稳定

2.2 选择排序

2.2.1基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元
素排完 。

2.2.2 直接选择排序:

在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

代码实现
代码一:

public static void selectSort(int[] array){for (int i = 0; i < array.length; i++) {int min = i;for (int j = i+1; j < array.length; j++) {if(array[j] < array[min]){min = j;}}swap(array,min,i);}}public static void swap(int[] array,int i,int j){int tmp = array[i];array[i] = array[j];array[j] = tmp;}

代码二:

public static void selectSort1(int[] array){int left = 0;int right = array.length-1;while(left < right){int max = left;int min = left;for (int j = left+1; j <= right; j++) {if(array[j] < array[min]){min = j;}if(array[j] > array[max]){max = j;}}swap(array,min,left);if(left == max){max = min;}swap(array,max,right);left++;right--;}}public static void swap(int[] array,int i,int j){int tmp = array[i];array[i] = array[j];array[j] = tmp;}

【直接选择排序的特性总结】

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

2.2.3 堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
在这里插入图片描述
代码实现:

public static void heapSort(int[] array){int end = array.length-1;createHeap(array);while(end > 0){swap(array,0,end);siftDown(array,0,end);end--;}}
public static void createHeap(int[] array){for (int i = (array.length-1-1)/2; i >= 0; i--) {siftDown(array,i,array.length);}}private static void siftDown(int[] array, int parent, int length) {int child = parent*2 + 1;while(child < length){if(child+1 < length && array[child] < array[child+1]){child++;}if(array[child] > array[parent]){swap(array,child,parent);parent = child;child = child*2 +1;}else{break;}}}

【堆排序的特性总结】

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

2.3 交换排序

基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特
点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

2.3.1冒泡排序

代码实现:

public static void bubbleSort(int[] array){for (int i = 0; i < array.length-1; i++) {boolean flg = false;for (int j = 0; j < array.length-1-i; j++) {if(array[j] > array[j+1]){swap(array,j,j+1);flg = true;}}if(!flg){break;}}}

【冒泡排序的特性总结】

  1. 冒泡排序是一种非常容易理解的排序
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定

2.3.2 快速排序

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

代码实现:

public static void quickSort(int[] array){quick(array,0,array.length-1);}public static void quick(int[] array,int start,int end){if(start >= end){return;}int mid= midIndex(array,start,end);swap(array,mid,start);int quickIndex = quickationHole(array,start,end);quick(array,start,quickIndex-1);quick(array,quickIndex+1,end);}public static int quickation(int[] array,int left ,int right){int tmp = left;while(left < right){while(left < right && array[right] >= array[tmp]){right--;}while(left< right && array[left] <= array[tmp]){left++;}swap(array,left, right);}swap(array,left,tmp);return left;}public static int quickationHole(int[] array,int left,int right){int tmp = array[left];while(left < right){while(left < right && array[right] >= tmp){right--;}array[left] = array[right];while(left < right && array[left] <= tmp){left++;}array[right] = array[left];}array[left] = tmp;return right;}public static int midIndex(int[] array,int start,int end){int mid = (start + end)>>>2;if(array[start] < array[end]){if(array[mid] > array[start]){return start;}else if (array[end] < array[mid]){return end;}else {return mid;}}else{if(array[mid] > array[start]){return end;}else if (array[end] < array[mid]){return start;}else {return mid;}}}

非递归实现:

public static void quickSortNor(int[] array){int start = 0;int end = array.length-1;Stack<Integer> stack = new Stack<>();int quickIndex = quickationHole(array,start,end);if(start+1 < quickIndex){stack.push(start);stack.push(quickIndex-1);}if(quickIndex+1 < end){stack.push(quickIndex+1);stack.push(end);}while(!stack.empty()){end = stack.pop();start = stack.pop();quickIndex = quickationHole(array,start,end);if(start+1 < quickIndex){stack.push(start);stack.push(quickIndex-1);}if(quickIndex+1 < end){stack.push(quickIndex+1);stack.push(end);}}}public static int quickationHole(int[] array,int left,int right){int tmp = array[left];while(left < right){while(left < right && array[right] >= tmp){right--;}array[left] = array[right];while(left < right && array[left] <= tmp){left++;}array[right] = array[left];}array[left] = tmp;return right;}

【快速排序总结】

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序

  2. 时间复杂度:O(N*logN)
    在这里插入图片描述

  3. 空间复杂度:O(logN)

  4. 稳定性:不稳定

2.4 归并排序

2.4.1 基本思想

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤
在这里插入图片描述
代码实现:

public static void mergeSort(int[] array){mergeSortFun(array,0,array.length-1);}private static void mergeSortFun(int[] array, int left, int right) {if(left >= right){return;}int mid = (left + right)/2;mergeSortFun(array,left,mid);mergeSortFun(array,mid+1,right);merge(array,left,mid,right);}private static void merge(int[] array,int left,int mid,int right){int s1 = left;int e1 = mid;int s2 = mid+1;int e2 = right;int[] tmparr = new int[right-left+1];int k =0;while(s1 <= e1 && s2 <= e2){if(array[s1] <= array[s2]){tmparr[k++] = array[s1++];}else{tmparr[k++] = array[s2++];}}while(s1 <= e1){tmparr[k++] = array[s1++];}while (s2 <= e2){tmparr[k++] = array[s2++];}for (int i = 0; i < tmparr.length; i++) {array[left+i] = tmparr[i];}}

非递归先实现:

public static void mergeSortNor(int[] array){int gap = 1;while(gap < array.length){for(int i = 0;i < array.length;i= i+gap*2){int left = i;int mid = left + gap -1;int right = mid + gap;if(mid >= array.length){mid = array.length-1;}if (right >= array.length) {right = array.length-1;}merge(array,left,mid,right);}gap*=2;}}private static void merge(int[] array,int left,int mid,int right){int s1 = left;int e1 = mid;int s2 = mid+1;int e2 = right;int[] tmparr = new int[right-left+1];int k =0;while(s1 <= e1 && s2 <= e2){if(array[s1] <= array[s2]){tmparr[k++] = array[s1++];}else{tmparr[k++] = array[s2++];}}while(s1 <= e1){tmparr[k++] = array[s1++];}while (s2 <= e2){tmparr[k++] = array[s2++];}for (int i = 0; i < tmparr.length; i++) {array[left+i] = tmparr[i];}}

【归并排序总结】

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

2.4.2 海量数据的排序问题

外部排序:排序过程需要在磁盘等外部存储进行的排序
前提:内存只有 1G,需要排序的数据有 100G
因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序

  1. 先把文件切分成 200 份,每个 512 M
  2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
  3. 进行 2路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

3. 排序算法复杂度及稳定性分析

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108562.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GB/T 41510-2022 起重机械安全评估规范 通用要求 摘要

在线预览|GB/T 41510-2022http://c.gb688.cn/bzgk/gb/showGb?typeonline&hcno696806EC48F4105CEF7479EB32C80C9E 知识点&#xff1a; 安全等级定义&#xff0c;设计寿命&#xff0c;剩余寿命&#xff0c;使用寿命。 标准附录有应力的具体解算演示。

VScode platformio的使用

一、platformio 工程创建 打开vscode界面你会发现左下多了个家的小图标&#xff0c;点击这里就可以进入platformio。 在右侧Quick Access栏中&#xff0c;有4个选项。可以看得出来&#xff0c;我们这里直接点击创建一个新的工程。 点击New Project打开project配置界面&#x…

LoongArch单机Ceph Bcache加速4K随机写性能测试

LoongArch单机Ceph Bcache加速4K随机写性能测试 两块HDD做OSD [rootceph01 ~]# fio -direct1 -iodepth128 -thread -rwrandwrite -ioenginelibaio -bs4k -size100G -numjobs1 -runtime600 -group_reporting -namemytest -filename/dev/rbd0 mytest: (g0): rwrandwrite, bs(R)…

C++对象模型(14)-- 构造函数语义学:拷贝构造函数和赋值运算赋

1、拷贝构造函数 1.1 什么是拷贝构造函数 拷贝构造函数是一种构造函数&#xff0c;它的功能是创建新对象。也就是说对象还没生成&#xff0c;这时利用另一个对象的拷贝来生成新的对象。 class MyDemo { public:// 默认构造函数MyDemo(){}// 拷贝构造函数MyDemo(const MyDemo…

【微信小程序】6天精准入门(第2天:小程序的视图层、逻辑层、事件系统及页面生命周期)

一、视图层 View 1、什么是视图层 框架的视图层由 WXML 与 WXSS 编写&#xff0c;由组件来进行展示。将逻辑层的数据反映成视图&#xff0c;同时将视图层的事件发送给逻辑层。WXML(WeiXin Markup language) 用于描述页面的结构。WXS(WeiXin Script) 是小程序的一套脚本语言&am…

实验四:回溯算法的设计与分析

某不知名学校大二算法课实验报告 题目来自力扣 第一题&#xff1a;幂集 力扣题目链接&#xff1a;幂集 题目描述&#xff1a; 幂集。编写一种方法&#xff0c;返回某集合的所有子集。集合中不包含重复的元素。 说明&#xff1a;解集不能包含重复的子集。 示例: 输入&#xf…

Leetcode刷题详解——长度最小的子数组

1. 题目链接&#xff1a;209. 长度最小的子数组 2. 题目描述&#xff1a; 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] &#xff0c;并返回其长度**。**如果不…

Tang Capital宣布收购纳斯达克上市公司Rain Oncology100%股权

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 猛兽财经获悉&#xff0c;纳斯达克上市公司Rain Oncology(Rain)宣布近期已收到Tang Capital Partners旗下的子公司Concentra Biosciences以每股1.25美元的现金收购要约。 这家临床阶段微型市值癌症治疗药物开发商的股价在消…

apache shiro安全框架反序列化漏洞

shiro是开源安全框架&#xff0c;它干净利落地处理身份认证&#xff0c;授权&#xff0c;企业会话管理和加密。 参见文章&#xff1a;百度安全验证 用linux搭建一个环境 配置下源vi /etc/apt/sources.list 源如果是kali官方的有时候会下载不了&#xff0c;改成中科大的源 更…

【Proteus仿真】【51单片机】电蒸锅温度控制系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用LCD1602液晶、按键开关、蜂鸣器、DS18B20温度传感器&#xff0c;液位传感器、继电器控制加热保温装置等。 主要功能&#xff1a; 系统运行后&#…

英国人工智能公司【TitanML】完成280万美元融资

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 猛兽财经获悉&#xff0c;总部位于英国伦敦的人工智能公司【TitanML】近期宣布已完成280万美元种子轮融资&#xff0c;该公司的产品允许机器学习团队部署大型语言模型(llm)。 本轮融资由Octopus Ventures领投&#xff0c;还…

Python文件共享+cpolar内网穿透:轻松实现公网访问

文章目录 1.前言2.本地文件服务器搭建2.1.Python的安装和设置2.2.cpolar的安装和注册 3.本地文件服务器的发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 数据共享作为和连接作为互联网的基础应用&#xff0c;不仅在商业和办公场景有广泛的应用&#…

进程的虚拟地址空间

一、 对于C/C程序员&#xff0c;我们看到的程序中的地址&#xff0c;都不是物理地址&#xff0c;而是操作系统映射的虚拟地址/线性地址&#xff0c;每一个进程都映射了同样结构的虚拟地址空间&#xff0c;让进程以为自己在独享内存资源&#xff0c;下图是以Linux下32位操作系统…

spark stream入门案例:netcat准实时处理wordCount(scala 编程)

目录 案例需求 代码 结果 解析 案例需求&#xff1a; 使用netcat工具向9999端口不断的发送数据&#xff0c;通过SparkStreaming读取端口数据并统计不同单词出现的次数 -- 1. Spark从socket中获取数据&#xff1a;一行一行的获取 -- 2. Driver程序执行时&#xff0c…

Lock使用及效率分析(C#)

针对无Lock、Lock、ReadWriterLock、ReadWriterLockSlim四种方式&#xff0c;测试在连续写的情况下&#xff0c;读取的效率&#xff08;原子操作Interlocked由于使用针对int,double等修改的地方特别多&#xff0c;而且使用范围受限&#xff0c;所以本文章没有测试&#xff09; …

C/C++笔试易错与高频题型图解知识点(二)—— C++部分(持续更新中)

目录 1.构造函数初始化列表 1.1 构造函数初始化列表与函数体内初始化区别 1.2 必须在初始化列表初始化的成员 2 引用&引用与指针的区别 2.1 引用初始化以后不能被改变&#xff0c;指针可以改变所指的对象 2.2 引用和指针的区别 3 构造函数与析构函数系列题 3.1构造函数与析…

【LeetCode热题100】--287.寻找重复数

287.寻找重复数 方法&#xff1a;使用快慢指针 使用环形链表II的方法解题&#xff08;142.环形链表II&#xff09;&#xff0c;使用 142 题的思想来解决此题的关键是要理解如何将输入的数组看作为链表。 首先明确前提&#xff0c;整数的数组 nums 中的数字范围是 [1,n]。考虑一…

【Qt控件之QDialogButtonBox】概述及使用

概述 QDialogButtonBox类是一个小部件&#xff0c;它以适合当前小部件样式的布局呈现按钮。 对话框和消息框通常以符合该台界面指南的布局呈现按钮。不同的平台会有不同的对话框布局。QDialogButtonBox允许发人员向其添加按钮&#xff0c;并将自使用用户的桌面环境所适合的布局…

数据结构--堆

一. 堆 1. 堆的概念 堆&#xff08;heap&#xff09;&#xff1a;一种有特殊用途的数据结构——用来在一组变化频繁&#xff08;发生增删查改的频率较高&#xff09;的数据集中查找最值。 堆在物理层面上&#xff0c;表现为一组连续的数组区间&#xff1a;long[] array &…

MySQl_2

目录 函数 一.字符串函数 二.数值函数 三.日期函数 四.流程控制函数 约束 多表查询 多表关系 一.内连接 二.外连接 三.自连接 四.联合查询 五.子查询 标量子查询 列子查询 行子查询 表子查询 函数 一.字符串函数 二.数值函数 SELECT LPAD(FLOOR(RAND()*1000000),…