python 机器视觉 车牌识别 - opencv 深度学习 机器学习 计算机竞赛

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于python 机器视觉 的车牌识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

车牌识别其实是个经典的机器视觉任务了,通过图像处理技术检测、定位、识别车牌上的字符,实现计算机对车牌的智能管理功能。如今在小区停车场、高速公路出入口、监控场所、自动收费站等地都有车牌识别系统的存在,车牌识别的研究也已逐步成熟。尽管该技术随处可见了,但其实在精度和识别速度上还需要进一步提升,自己动手实现一个车牌识别系统有利于学习和理解图像处理的先进技术。

本文详细介绍基于深度学习的中文车牌识别与管理系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的简单UI界面。在界面中可以选择需要识别的车牌视频、图片文件等。

2 效果演示

首先还是用动图先展示一下效果,系统主要实现的功能是对图片、视频中的车牌进行检测和识别,演示效果如下。

2.1 图片检测识别

在这里插入图片描述

2.2视频检测识别

在这里插入图片描述

3 车牌检测与识别

目前,智能交通系统中集成运用计算机视觉、物联网、人工智能等多种技术成为未来发展方向。其中,车牌识别(License Plate Recognition,
LPR)技术作为一项重要技术,从获取的图像中提取目标车辆的车牌信息,成为完善智能交通管理运行的基础。

由于本文介绍的是中文车牌,所以可以简单了解一下国内汽车拍照的特点:字符数为七个,包括汉字、字母和数字。车牌颜色组合中,其中最常见的组合为普通小型汽车蓝底白字和新能源汽车的渐变绿底黑字。

在这里插入图片描述

总结来说,车牌是一个有特点的图像区域,几种特征可以综合起来确定车牌定位,所以之前就有利用车牌与周围环境的差异的算法。目前常见的车牌定位算法有以下 4
种:基于颜色、纹理、边缘信息的车牌定位算法和基于人工神经网络的车牌定位算法。

如下图所示,常规的步骤包括图像采集、预处理、车牌定位、字符分割、字符识别、输出结果。深度学习技术成熟之后,端到端的网络模型使得这一过程变得简单起来。从思想上来说,基于深度学习的车牌识别实现思路主要包括两个部分:(1)车牌检测定位;(2)车牌字符识别。

在这里插入图片描述

其中,车牌的检测定位本质是一个特定的目标检测任务,即通过算法框选出属于车牌的位置坐标,以便将其与背景区分开来。可以认为检测出的车牌位置才是我们的感兴趣区域。好用的方法如Cascade
LBP,它是一种机器学习的方法,可以利用OpenCV训练级联分类器,依赖CPU进行计算,级联分类器的方法对于常用场景效果比较好,检测速度较快,曾经一度比较流行,但准确率一般。基于深度学习的检测算法有Mobilene-
SSD、YOLO-v5等,利用大批量的标注数据进行训练.

当ROI被检测出来,如何对这一区域中的字符进行识别,这就涉及到采取的处理方式。第一种处理方式,首先利用一系列字符分割的算法将车牌中的字符逐个分开,然后基于深度学习进行字符分类,得到识别结果;第二种,区别于第一种先分割再分类的两步走方式,利用端到端的CTC(
Connectionist Temporal Classification)网络直接进行识别。

这里我们使用网上开源的HyperLPR中文车牌识别框架,首先导入OpenCV和hyperlpr,读取一张车牌图片调用架构中的车牌识别方法获得结果,以下代码来自官方的示例:

    #导入包from hyperlpr import *#导入OpenCV库import cv2#读入图片image = cv2.imread("demo.jpg")#识别结果print(HyperLPR_plate_recognition(image))

以上代码运行结果如下,可以看出该方法识别了车牌的车牌字符、置信度值、车牌位置坐标、图片尺寸等结果。

在这里插入图片描述

这样的结果还不够直观,我们写一个函数将车牌的识别结果标注在图片上,首先导入相关依赖包,其代码如下:

    # 导入包from hyperlpr import *# 导入OpenCV库import cv2 as cvfrom PIL import Image, ImageDraw, ImageFontimport numpy as np

新建一个函数drawRectBox,将图像数据、识别结果、字体等参数传入,函数内部利用OpenCV和PIL库添加标注框和识别结果的字符,其代码如下:

    def drawRectBox(image, rect, addText, fontC):cv.rectangle(image, (int(round(rect[0])), int(round(rect[1]))),(int(round(rect[2]) + 8), int(round(rect[3]) + 8)),(0, 0, 255), 2)cv.rectangle(image, (int(rect[0] - 1), int(rect[1]) - 16), (int(rect[0] + 75), int(rect[1])), (0, 0, 255), -1, cv.LINE_AA)img = Image.fromarray(image)draw = ImageDraw.Draw(img)draw.text((int(rect[0] + 1), int(rect[1] - 16)), addText, (255, 255, 255), font=fontC)imagex = np.array(img)return imagex

我们首先读取图片文件,利用前面的HyperLPR_plate_recognition方法识别出车牌结果,调用以上函数获得带标注框的图片,利用OpenCV的imshow方法显示结果图片,其代码如下:

    image = cv.imread('test3.jpeg')  # 读取选择的图片res_all = HyperLPR_plate_recognition(image)fontC = ImageFont.truetype("./platech.ttf", 14, 0)res, confi, axes = res_all[0]image = drawRectBox(image, axes, res, fontC)cv.imshow('Stream', image)c = cv.waitKey(0) & 0xff

此时运行以上代码可以得到如下结果:

在这里插入图片描述

同理,识别视频中的车牌也可以做类似的操作,不过我们需要先对视频文件进行逐帧读取,然后采用以上的方式在图片中标识出车牌并显示。

这部分代码如下:

    
capture = cv.VideoCapture("./车牌检测.mp4")  # 读取视频文件
fontC = ImageFont.truetype("./platech.ttf", 14, 0)  # 字体,用于标注图片
​    i = 1
while (True):ref, frame = capture.read()if ref:i = i + 1if i % 5 == 0:i = 0res_all = HyperLPR_plate_recognition(frame)  # 识别车牌if len(res_all) > 0:res, confi, axes = res_all[0]  # 获取结果frame = drawRectBox(frame, axes, res, fontC)cv.imshow("num", frame)  # 显示画面if cv.waitKey(1) & 0xFF == ord('q'):break  # 退出else:break

以上代码每5帧识别一次视频中的车牌,将车牌的结果标注在画面中进行实时显示,运行结果的截图如下所示:
在这里插入图片描述

车牌的识别部分代码演示完毕,对此我们完成了图片和视频的识别,然而这些还是简单的脚本呈现。为了方便更换图片、视频以及管理车牌,还需要设计文件选择功能以及系统的UI界面。这部分代码如下:

    class Ui_MainWindow(object):def setupUi(self, MainWindow):MainWindow.setObjectName("MainWindow")MainWindow.resize(800, 600)self.centralwidget = QtWidgets.QWidget(MainWindow)self.centralwidget.setObjectName("centralwidget")self.openimage = QtWidgets.QPushButton(self.centralwidget)self.openimage.setGeometry(QtCore.QRect(20, 40, 91, 51))self.openimage.setObjectName("openimage")self.showlabel = QtWidgets.QLabel(self.centralwidget)self.showlabel.setGeometry(QtCore.QRect(110, 10, 471, 441))self.showlabel.setObjectName("showlabel")self.LPRdetect = QtWidgets.QPushButton(self.centralwidget)self.LPRdetect.setGeometry(QtCore.QRect(20, 150, 81, 51))self.LPRdetect.setObjectName("LPRdetect")self.LPR_Rec = QtWidgets.QPushButton(self.centralwidget)self.LPR_Rec.setGeometry(QtCore.QRect(20, 292, 75, 31))self.LPR_Rec.setObjectName("LPR_Rec")self.lineEdit_result = QtWidgets.QLineEdit(self.centralwidget)self.lineEdit_result.setGeometry(QtCore.QRect(20, 400, 101, 41))self.lineEdit_result.setObjectName("lineEdit_result")self.openvideo = QtWidgets.QPushButton(self.centralwidget)self.openvideo.setGeometry(QtCore.QRect(20, 360, 75, 23))self.openvideo.setObjectName("openvideo")MainWindow.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(MainWindow)self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 23))self.menubar.setObjectName("menubar")MainWindow.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(MainWindow)self.statusbar.setObjectName("statusbar")MainWindow.setStatusBar(self.statusbar)self.retranslateUi(MainWindow)QtCore.QMetaObject.connectSlotsByName(MainWindow)def retranslateUi(self, MainWindow):_translate = QtCore.QCoreApplication.translateMainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))self.openimage.setText(_translate("MainWindow", "打开图片"))self.showlabel.setText(_translate("MainWindow", "TextLabel"))self.LPRdetect.setText(_translate("MainWindow", "车牌检测"))self.LPR_Rec.setText(_translate("MainWindow", "车牌识别"))self.openvideo.setText(_translate("MainWindow", "PushButton"))

4 HyperLPR库

4.1 简介

HyperLPR是一个使用深度学习针对对中文车牌识别的实现,与较为流行的开源的EasyPR相比,它的检测速度和鲁棒性和多场景的适应性都要好于目前开源的EasyPR,HyperLPR可以识别多种中文车牌包括白牌,新能源车牌,使馆车牌,教练车牌,武警车牌等。

4.2 特点

  • 基于端到端sequence模型,无需进行字符分割,识别速度更快。
  • 速度快 720p ,单核 Intel 2.2G CPU (macbook Pro 2015)平均识别时间<=90ms
  • 识别率高,仅仅针对车牌ROI在EasyPR数据集上,0-error达到 95.2%, 1-error识别率达到 97.4% (指在定位成功后的车牌识别率)
  • 轻量总代码量不超1k行。
  • 带有Android实现,其Android Demo可解决一些在一些普通业务场景(如执法记录仪)下的车牌识别任务。
  • 支持多种车牌的识别,详情见如下

4.3 HyperLPR的检测流程

  • 使用opencv的HAAR Cascade检测车牌大致位置
  • Extend检测到的大致位置的矩形区域
  • 使用类似于MSER的方式的多级二值化和RANSAC拟合车牌的上下边界
  • 使用CNN Regression回归车牌左右边界
  • 使用基于纹理场的算法进行车牌校正倾斜
  • 使用CNN滑动窗切割字符
  • 使用CNN识别字符

4.4 安装


​ pip install hyperlpr

4.5 Python 依赖

  • Keras (>2.0.0)

  • Theano(>0.9) or Tensorflow(>1.1.x)

  • Numpy (>1.10)

  • Scipy (0.19.1)

  • OpenCV(>3.0)

  • Scikit-image (0.13.0)

  • PIL

  • 使用CNN识别字符

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/107820.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

yolo配置(windows)

文章目录 一、下载Anaconda和pycharm1 、Anaconda官方下载地址&#xff1a;1.2 Anaconda 的安装 下载好之后双击打开可执行安装文件&#xff1a;1.3 进入到安装界面&#xff1a;1.4 这里建议两个都勾选&#xff08;第一个选项是将 Anaconda 添加到环境变量中&#xff0c;不勾选…

2023_Spark_实验十七:导入招聘大数据(项目)

一、爬虫爬取的招聘网站数据 二、在MySQL中创建空表 SET FOREIGN_KEY_CHECKS0;-- ---------------------------- -- Table structure for jd_jobs -- ---------------------------- DROP TABLE IF EXISTS jd_jobs; CREATE TABLE jd_jobs (job_name text,job_date text,minSale…

游戏缺少dll文件用什么修复?dll多种修复方法指南

在玩游戏时&#xff0c;有时候可能会遇到游戏缺少dll文件的问题。dll文件是动态链接库的缩写&#xff0c;它包含了一些函数和资源&#xff0c;游戏运行需要依赖这些文件。如果缺少了某个dll文件&#xff0c;游戏就可能无法正常运行。那么游戏缺少dll文件用什么修复&#xff1f;…

Win10 搭建FTP服务器

1. FTP 服务器用途 局域网中&#xff0c;资料共享&#xff0c;如果想实现外网访问可以设置路由端口映射&#xff08;不建议外网一旦打开风险增大&#xff09; 2. FTP服务器可以设置用户权限有什么&#xff1f; 用户只能读取 用户只能写入 用户读取写入 使用场景&#xff…

html进阶语法

html进阶 列表、表格、表单 目标&#xff1a;掌握嵌套关系标签的写法&#xff0c;使用列表标签布局网页 01-列表 作用&#xff1a;布局内容排列整齐的区域。 列表分类&#xff1a;无序列表、有序列表、定义列表。 无序列表 作用&#xff1a;布局排列整齐的不需要规定顺序的…

BAT027:删除当前目录指定文件夹以外的文件夹

引言&#xff1a;编写批处理程序&#xff0c;实现删除当前目录指定文件夹以外的文件夹。 一、新建Windows批处理文件 参考博客&#xff1a; CSDNhttps://mp.csdn.net/mp_blog/creation/editor/132137544 二、写入批处理代码 1.右键新建的批处理文件&#xff0c;点击【编辑】…

docker入门加实战—网络

docker入门加实战—网络 我们运行了一些容器&#xff0c;但是这些容器是否能够进行连通呢&#xff1f;那我们就来试一下。 我们查看一下MySQL容器的详细信息&#xff1a; 主要关注&#xff0c;Networks.bridge.IPAddress属性信息&#xff1a; docker inspect mysql # 或者过…

Leetcode 141:环形链表

给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&#xff08;…

for循环遍历的`form表单组件`rules规则校验失效问题——下拉框选择之后还是报红---亲测有效

问题: 大概的效果就是这种, for循环选择之后还是还是报红 看文章之前 : 先检查 model rules pops 有没有判定好 解决: 参考了他的 for循环遍历的form表单组件rules规则校验失效问题——输入内容后依然提示必填&#xff0c;亲测有效——基础积累_a-form-model的validat…

Java 获取请求真实IP

获取IP地址为 127.0.0.1, 或者内网地址 Nginx配置, 只有 proxy_pass 时只能获取到 127.0.0.1 location / {proxy_pass http://127.0.0.1:8080; }修改为 location / {#保留代理之前的host 包含客户端真实的域名和端口号proxy_set_header Host $host; #保留代理之前的真实客…

互联网Java工程师面试题·Java 总结篇·第四弹

目录 31、String s new String(“xyz”);创建了几个字符串对象&#xff1f; 32、接口是否可继承&#xff08;extends&#xff09;接口&#xff1f;抽象类是否可实现&#xff08;implements&#xff09;接口&#xff1f;抽象类是否可继承具体类&#xff08;concrete class&am…

ESP32网络编程-TCP客户端数据传输

TCP客户端数据传输 文章目录 TCP客户端数据传输1、IP/TCP简单介绍2、软件准备3、硬件准备4、TCP客户端实现本文将详细介绍在Arduino开发环境中,实现一个ESP32 TCP客户端,从而达到与TCP服务器数据交换的目标。 1、IP/TCP简单介绍 Internet 协议(IP)是 Internet 的地址系统,…

【面试HOT100】子串普通数组矩阵

系列综述&#xff1a; &#x1f49e;目的&#xff1a;本系列是个人整理为了秋招面试的&#xff0c;整理期间苛求每个知识点&#xff0c;平衡理解简易度与深入程度。 &#x1f970;来源&#xff1a;材料主要源于LeetCodeHot100进行的&#xff0c;每个知识点的修正和深入主要参考…

基于IPSec VPN隧道技术的国密加密网关保障电力工控数据安全

IPSec VPN&#xff08;Internet Protocol Security Virtual Private Network&#xff09;隧道技术为电力工控系统提供了重要的数据安全传输手段。该技术能实现身份鉴别和数据加密传输&#xff0c;为系统的防护工作增添了有力的支持。 电力工控系统对数据传输的可靠性要求较高。…

【使用python和flask建个人博客】修复侧边栏最新文章、最多阅读等链接不能打开的问题

自从上次因版本兼容问题修改过部分代码之后,好长时间没光顾woniunote这个个人博客模块了,最近发文章的时候发现侧边栏的文章打不开,定位了bug,并进行了修复。 <div class="col-12 side"><div class="tip" align

SAP ERP系统解决光伏电池产业管理难题

无锡哲讯聚焦光伏行业的业务需求和流程&#xff0c;推出SAP光伏能源行业整体化解决方案。该系统着眼于“企业管理信息化、资源合理配置、利润扩张”三个方面&#xff0c;提供实用丰富的管理功能&#xff0c;同时具有较高的信息综合利用效率。SAP解决方案实现了光伏企业产、供、…

CEC2013(MATLAB):​白鲸优化算法(Beluga whale optimization,BWO)​求解CEC2013

一、白鲸优化算法&#xff08;Beluga whale optimization&#xff0c;BWO&#xff09; 白鲸优化算法&#xff08;Beluga whale optimization&#xff0c;BWO&#xff09;由Changting Zhong等人于2022年提出&#xff0c;该算法模拟了白鲸游泳&#xff0c;觅食和“鲸鱼坠落”行为…

linux系统中日志简介

1.linux系统中日志文件类型 主要包括三种&#xff1a; 内核及系统日志 &#xff1a;主要由 系统服务 rsyslog统一管理&#xff0c;根据服务的主配置文件 /etc/rsyslog.conf 中的设置决定 内核和系统程序消息记录的位置。用户日志 &#xff1a; 记录linux系统中用户的登录和退出…

LeetCode 面试题 10.01. 合并排序的数组

文章目录 一、题目二、C# 题解 一、题目 给定两个排序后的数组 A 和 B&#xff0c;其中 A 的末端有足够的缓冲空间容纳 B。 编写一个方法&#xff0c;将 B 合并入 A 并排序。 初始化 A 和 B 的元素数量分别为 m 和 n。 示例: 输入: A [1,2,3,0,0,0], m 3 B [2,5,6], n 3 输…

第58节——redux-toolkit中的createAsyncThunk

一、概念 createAsyncThunk 是一个由 Redux Toolkit 提供的函数&#xff0c;用于创建处理异步操作的 thunk action creator。使用 createAsyncThunk 可以简化 Redux 中处理异步操作的流程&#xff0c;使代码更加清晰、简洁。 二、参数说明 import { createAsyncThunk } from…