GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

自从chatGPT掀起的AI大模型热潮以来,国内大模型研究和开源活动,进展也如火如荼。模型越来越大,如何在小显存部署和使用大模型?

本实战专栏将评估一系列的开源模型,尤其关注国产大模型,重点在于可私有化、轻量化部署,比如推理所需的GPU资源控制在24G显存内。

目录

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

一、ChatGLM2 模型介绍

二、资源需求

模型文件类型

推理的GPU资源要求

模型获取途径

三、部署安装

配置环境

安装过程

低成本部署方案

四、启动 ChatGLM2大模型

命令行对话界面

网页demo

五、功能测试


一、ChatGLM2 模型介绍

ChatGLM2模型是清华研究团队领衔开发的:

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

  1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用 GLM 的混合目标函数,经过 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得大幅度的提升,在同尺寸开源模型中具有较强的竞争力。

  2. 更长的上下文:基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,会在后续迭代升级中着重进行优化。

  3. 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。

github链接:GitHub - THUDM/ChatGLM2-6B: ChatGLM2-6B: An Open Bilingual Chat LLM | 开源双语对话语言模型

二、资源需求

模型文件类型

chatglm2的6b中英对话模型,分为6b,上下文长度8K,分为FP16,INT8,INT4三个子类型。

6b-32k,上下文长度32K,分为FP16,INT8,INT4量化模型3个子类型。

一共6种类型,可根据自身情况选择。

推理的GPU资源要求

因此,使用 6GB 显存的显卡进行 INT4 量化的推理时,初代的 ChatGLM-6B 模型最多能够生成 1119 个字符就会提示显存耗尽,而 ChatGLM2-6B 能够生成至少 8192 个字符。

量化等级编码 2048 长度的最小显存生成 8192 长度的最小显存
FP16 / BF1613.1 GB12.8 GB
INT88.2 GB8.1 GB
INT45.5 GB5.1 GB

ChatGLM2-6B 利用了 PyTorch 2.0 引入的 torch.nn.functional.scaled_dot_product_attention 实现高效的 Attention 计算,如果 PyTorch 版本较低则会 fallback 到朴素的 Attention 实现,出现显存占用高于上表的情况。

模型获取途径

下载链接:

Github地址 git clone GitHub - THUDM/ChatGLM2-6B: ChatGLM2-6B: An Open Bilingual Chat LLM | 开源双语对话语言模型

国外: Huggingface

ChatGLM2-6b-32k : https://huggingface.co/THUDM/chatglm2-6b-32k

ChatGLM2-6b : https://huggingface.co/THUDM/chatglm2-6b

国内:ModelScope

ChatGLM2-6B : chatglm2-6b

ChatGLM2-6B-32k : chatglm2-6b-32k

三、部署安装

配置环境

项目在本地普通设备,部署非量化版本。

显卡双显卡Nivdia Titan xp,每块12G, 共24G显卡

ubuntu 20.04

python 3.10版本,推荐3.8以上版本

pytorch 2.01,推荐2.0及以上版本,如果 PyTorch 版本较低则会 fallback 到朴素的 Attention 实现,出现显存占用高情况。

CUDA 11.4,建议使用11.4及以上版本

安装过程

创建虚拟环境

conda create -n chatglm2 python==3.10.6 -y
conda activate chatglm2

安装ChatGLM2 依赖配套软件

git clone --recursive https://github.com/THUDM/ChatGLM2-6B.git; 
cd ChatGLM2-6B
pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple

其中 transformers 库版本推荐为 4.30.2torch 推荐使用 2.0 及以上的版本,以获得最佳的推理性能。

下载模型文件

推理所需的模型权重、源码、配置已发布在 Hugging Face,见上面的下载链接。

代码会由 transformers 自动下载模型实现和参数。完整的模型实现在 Hugging Face Hub。

另外,模型权重比较大,如果你的网络环境较差,下载模型参数可能会花费较长时间甚至失败。此时可以先将模型下载到本地,然后从本地加载。

也可以从modelscope,或者清华链接(清华大学云盘)下载手动下载,国产模型的一个好处。并将下载的文件替换到本地的 chatglm2-6b 目录下。加载程序同时需要修改,为模型下载到本地的目录,如将以上代码中的 THUDM/chatglm2-6b 替换为你本地的 chatglm2-6b 文件夹的路径,即可从本地加载模型。

低成本部署方案

量化模型加载

默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:

model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4",trust_remote_code=True).cuda()

模型量化会带来一定的性能损失,经过测试,ChatGLM2-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。 量化模型的参数文件也可以从这里手动下载。

多卡部署加载

如果有多张 GPU,但是每张 GPU 的显存大小都不足以容纳完整的模型,那么可以将模型切分在多张GPU上。首先安装 accelerate: pip install accelerate,然后通过如下方法加载模型:

from utils import load_model_on_gpus
model = load_model_on_gpus("THUDM/chatglm2-6b", num_gpus=2)

即可将模型部署到两张 GPU 上进行推理。你可以将 num_gpus 改为你希望使用的 GPU 数。默认是均匀切分的,你也可以传入 device_map 参数来自己指定。

CPU部署

如果没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)

model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).float()

如果内存不足的话,也可以使用量化后的模型

model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4",trust_remote_code=True).float()

在 cpu 上运行量化后的模型需要安装 gccopenmp。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 TDM-GCC 时勾选 openmp。 Windows 测试环境 gcc 版本为 TDM-GCC 10.3.0, Linux 为 gcc 11.3.0

四、启动 ChatGLM2大模型

命令行对话界面

python cli_demo.py

程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入 clear 可以清空对话历史,输入 stop 终止程序。

网页demo

python web_demo.py

可以通过命令启动基于 Gradio 的网页版 demo,会在本地启动一个 web 服务,把控制台给出的地址放入浏览器即可访问。

还可以通过以下命令启动基于 Streamlit 的网页版 demo:

streamlit run web_demo2.py

网页版 demo 会运行一个 Web Server,并输出地址。在浏览器中打开输出的地址即可使用。 经测试,基于 Streamlit 的网页版 Demo 会更流畅。

五、功能测试

认识自己问题:你是谁

鸡土同笼问题:鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

python编程:写一个python程序,打印每个二叉树的每个树节点的值

觉得有用 点个赞 + 收藏

end

相关文章:

GPT实战系列-Baichuan2本地化部署实战方案

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/107596.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CICD:Circle CI 实现CICD

持续集成解决什么问题 提高软件质量效率迭代便捷部署快速交付、便于管理 持续集成(CI) 集成,就是一些孤立的事物或元素通过某种方式集中在一起,产生联系,从而构建一个有机整体的过程。 持续,就是指长期…

element ui el-table表格复选框,弹框关闭取消打勾选择

//弹框表格复选框清空 this.$nextTick(()>{this.$refs.table.clearSelection();})<el-table ref"table" v-loading"crud.loading" :header-cell-style"{ color: #FFF, background: #333 }":cell-style"{ color: #FFF, background: #3…

Java基础--阳光总在风雨后,请相信彩虹

1、今日任务 JAVA SE-韩顺平视频教程–30p以上&#xff08;今天得50p以上因为是基础&#xff09;计算机基础八股记忆总结刷题&#xff08;两题&#xff09;可以先用python 1、SSM ssm->Spring&#xff08;轻量级的文本开发框架&#xff09;/SpringMVC&#xff08;分层的w…

Android自定义AppGlideModule,DataFetcher ,ModelLoaderFactory,ModelLoader,Kotlin(1)

Android自定义AppGlideModule,DataFetcher ,ModelLoaderFactory,ModelLoader,Kotlin(1) 假设实现一个简单的功能&#xff0c;对传入要加载的path路径增加一定的筛选、容错或“重定向”&#xff0c;需要自定义一个模型&#xff0c;基于这个模型&#xff0c;让Glide自动匹配模型…

【【萌新的SOC学习之AXI DMA环路测试介绍】】

萌新的SOC学习之AXI DMA环路测试介绍 AXI DMA环路测试 DMA(Direct Memory Access&#xff0c;直接存储器访问)是计算机科学中的一种内存访问技术。它允许某些计算机内部的硬件子系统可以独立地直接读写系统内存&#xff0c;而不需中央处理器&#xff08;CPU&#xff09;介入处…

从零开始的LINUX(二)

1.alias: 用法&#xff1a;取别名&#xff0c;此时code1是code的别名&#xff0c;对code1进行操作和对code进行操作结果一致。 如果原本文件名不存在&#xff0c;仍可以正常运行指令&#xff0c;不会报错。 2.stat 显示指定文件或目录的状态、属性。 3.touch 当文件名不存在的…

1.MySQL库的操作

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 1.创建数据库&#xff1a; 语法&#xff1a;create database if not exists db_name charset字符集 collate校验规则 ; if not exists &#xff0c;charset &#xff0c;collate可以不加&#xff0c;直接create database 数…

Vue项目 -- 解决Eslint导致的console报错问题

在利用vue-cli3构建的项目中引入eslint进行语法检查时&#xff0c;使用console.log(‘xxx’)时&#xff0c;控制台抛出了Unexpected console statement (no-console) 异常&#xff0c; 例&#xff1a;一使用console就提示报错 解决办法是&#xff1a; 在 .eslintrc.js 文件中…

docker离线安装和使用

通过修改daemon配置文件/etc/docker/daemon.json来使用加速器sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": ["https://ullx9uta.mirror.aliyuncs.com"] } EOF sudo systemctl daemon-reload sudo syste…

常见场景面试题(二)

typora-copy-images-to: imgs theme: cyanosis 敏感词库的设计&#xff0c;要求增删改查敏感词。敏感词文本匹配&#xff0c;敏感词一万个&#xff0c;文本长度在 20 - 1000 答&#xff1a;使用 trie 树来实现敏感词库的设计&#xff0c;可以利用字符串公共前缀来节约存储空间。…

使用 Elasticsearch 作为向量数据库:深入研究 dense_vector 和 script_score

Elasticsearch 是一个非常强大且灵活的搜索和分析引擎。 虽然其主要用例围绕全文搜索&#xff0c;但它的用途广泛&#xff0c;足以用于各种其他功能。 其中一项引起许多开发人员和数据科学家关注的功能是使用 Elasticsearch 作为向量数据库。 随着 dense_vector 数据类型的出现…

基本分段存储管理方式(分段,段表,地址转换以及与分页管理对比)

1.分段 1.进程的地址空间: 按照程序自身的逻辑关系划分为若干个段&#xff0c;每个段都有一个段名 &#xff08;在低级语言中&#xff0c;程序员使用段名来编程&#xff09;&#xff0c;每段从0开始编址. 2.内存分配规则: 以段为单位进行分配&#xff0c;每个段在内存中占据…

学习笔记---超基础+详细+新手的顺序表~~

目录 1.顺序表的前言 1.1 顺序表--->通讯录&#x1f4c7; 1.2 数据结构的相关概念&#x1f3c7; 1.2.1 什么是数据结构 1.2.1 为什么需要数据结构 2. 顺序表概念及分类 2.1 顺序表的概念&#x1f419; 2.2 顺序表的分类&#x1f42b; 2.2.1 顺序表和数组的区别 2.…

金x软件有限公司安全测试岗位面试

目录 一、自我介绍 二、你是网络空间安全专业的&#xff0c;那你介绍下网络空间安全这块主要学习的东西&#xff1f; 三、本科专业是网络工程&#xff0c;在嘉兴海视嘉安智城科技有限公司实习过&#xff0c;你能说下干的工作吗&#xff1f;&#xff08;没想到问的是本科实习…

第一个Spring程序

目录 一、怎么创建Spring项目 1.1 使用maven创建Spring项目 1.2 导入Spring相关依赖 二、Spring的配置文件 三、使用Spring配置文件创建类对象 3.1 Spring核心api 3.2 Spring程序开发 一、怎么创建Spring项目 1.1 使用maven创建Spring项目 在创建新项目的时候使用maven去创建…

NLP算法面经 | 腾讯 VS 美团

作者 | 曾同学 编辑 | NewBeeNLP 面试锦囊之面经分享系列&#xff0c;持续更新中 后台回复『面试』加入讨论组交流噢 lz从3月初脚因打球扭伤了开始&#xff0c;投递简历&#xff0c;接二连三的面试鞭尸又面试&#xff0c;昨天才终于上岸了&#xff0c;分享经验~ 腾讯PCG看点&…

【Python-Django】基于TF-IDF算法的医疗推荐系统复现过程

复现步骤 step1&#xff1a; 修改原templates路径&#xff0c;删除&#xff0c;将setting.py中的路径置空 step2&#xff1a; 注册app python manage.py startapp [app名称]在app目录下创建static和templates目录 step3&#xff1a; 将项目中的资源文化进行拷贝 step4&#…

新能源电池试验中准确模拟高空环境大气压力的解决方案

摘要&#xff1a;针对目前新能源电池热失控和特性研究以及生产中缺乏变环境压力准确模拟装置、错误控制方法造成环境压力控制极不稳定以及氢燃料电池中氢气所带来的易燃易爆问题&#xff0c;本文提出了相应的解决方案。方案的关键一是采用了低漏率电控针阀作为下游控制调节阀实…

《省级国土空间规划编制技术规程》国家标准(GB/T 43214-2023)原文下载

《省级国土空间规划编制技术规程》国家标准&#xff08;GB/T 43214-2023&#xff0c;以下简称《规程》&#xff09;&#xff0c;将于2024年1月1日起实施&#xff0c;该《规程》由市场监管总局&#xff08;国家标准委&#xff09;9月7日批准发布。 《规程》由自然资源部组织编制…

Steam将强制执行短信验证以遏制肆虐的恶意更新

为应对最近爆发的恶意更新&#xff0c;著名游戏平台Steam出品方Valve近日发布公告称&#xff0c;将为Steam 上发布游戏的开发者实施额外的安全措施&#xff0c;包括基于短信的确认码。 游戏及软件开发商在 Steam 平台上分发其产品需要用到Steamworks&#xff0c;它支持DRM&…