基于MindSpore的llama微调在OpenI平台上运行

基于MindSpore的llama微调在OpenI平台上运行

克隆预训练模型

克隆chatglm-6b代码仓,下载分布式的模型文件

git lfs install
git clone https://huggingface.co/openlm-research/open_llama_7b

准备环境

安装Transformer

pip install transformers

执行转换脚本

python mindformers/models/glm/convert_weight.py --pt_ckpt_path /home/ma-user/work/models/mindspore/pt_glm_6b.pth --ms_ckpt_path ../models/mindspore/ms_glm_6b.ckpt

注意可能会遇到以下错误:

执行转换脚本,得到转换后的输出文件ms_glm_6b.ckpt

解决方法:

export LD_PRELOAD=$LD_PRELOAD:/home/ma-user/anaconda3/envs/MindSpore/lib/python3.7/site-packages/torch/lib/libgomp-d22c30c5.so.1 

原理:找到torch中的libgomp-d22c30c5.so.1 然后赋值给LD_PRELOAD环境变量,这个报错好像只有ARM平台会有

微调训练集准备

微调方式:lora

目前提供alpaca数据集的预处理脚本用于全参微调/lora微调任务。

数据集地址:https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json

alpaca数据集原始格式样例:

# alpaca examples:{"instruction": "Describe a time when you had to make a difficult decision.","input": "","output": "I had to make a difficult decision when I was working as a project manager at a construction company. I was in charge of a project that needed to be completed by a certain date in order to meet the client\u2019s expectations. However, due to unexpected delays, we were not able to meet the deadline and so I had to make a difficult decision. I decided to extend the deadline, but I had to stretch the team\u2019s resources even further and increase the budget. Although it was a risky decision, I ultimately decided to go ahead with it to ensure that the project was completed on time and that the client\u2019s expectations were met. The project was eventually successfully completed and this was seen as a testament to my leadership and decision-making abilities."},{"instruction": "Identify the odd one out.","input": "Twitter, Instagram, Telegram","output": "Telegram"},

执行alpaca_converter.py,使用fastchat工具添加prompts模板,将原始数据集转换为多轮对话格式

# 脚本路径:tools/dataset_preprocess/llama/alpaca_converter.py
# 执行转换脚本
python alpaca_converter.py \
--data_path /home/ma-user/work/data/alpaca_data.json \
--output_path /home/ma-user/work/data/alpaca-data-conversation.json

参数说明

# 参数说明
data_path: 存放alpaca数据的路径
output_path: 输出转换后对话格式的数据路径

转换后的样例:

{"id": "1","conversations": [{"from": "human","value": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nGive three tips for staying healthy.\n\n### Response:"},{"from": "gpt","value": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule."}]},

执行llama_preprocess.py,进行数据预处理、Mindrecord数据生成,将带有prompt模板的数据转换为mindrecord格式。

安装依赖:

pip install "fschat[model_worker,webui]"

执行脚本

# 脚本路径:tools/dataset_preprocess/llama/llama_preprocess.py
# 由于此工具依赖fschat工具包解析prompt模板,请提前安装fschat >= 0.2.13 python = 3.9
python llama_preprocess.py \
--dataset_type qa \
--input_glob /home/ma-user/work/data/alpaca-data-conversation.json \
--model_file /home/ma-user/work/models/open_llama_7b/tokenizer.model \
--seq_length 2048 \
--output_file /home/ma-user/work/models/alpaca-fastchat2048.mindrecord

lora微调

目前lora微调适配了llama_7b模型,并给出了默认配置文件config/llama/run_llama_7b_lora.yaml

  • step 1. 修改配置文件,参考全参微调修改训练数据集路径与预训练权重路径。
  • step 2. 启动lora微调任务。
    注:llama_7b_lora模型支持单卡启动,需将配置文件中的use_parallel参数置为False。

脚本启动

python run_mindformer.py --config=./configs/llama/run_llama_7b_lora.yaml --use_parallel=False --run_mode=finetune

run_llma_7b_lora.yaml

seed: 0
output_dir: './output'  # 当前不支持自定义修改,请勿修改该默认值
load_checkpoint: '/home/ma-user/work/models/mindspore/open_llama_7b_ms.ckpt'
src_strategy_path_or_dir: ''
auto_trans_ckpt: False  # If true, auto transform load_checkpoint to load in distributed model
only_save_strategy: False
resume_training: False
run_mode: 'finetune'# trainer config
trainer:type: CausalLanguageModelingTrainermodel_name: 'llama_7b_lora'# runner config
runner_config:epochs: 1batch_size: 2sink_mode: Truesink_size: 2# optimizer
optimizer:type: FP32StateAdamWeightDecaybeta1: 0.9beta2: 0.95eps: 1.e-8learning_rate: 1.e-4# lr sechdule
lr_schedule:type: CosineWithWarmUpLRlearning_rate: 1.e-4warmup_ratio: 0.03total_steps: -1 # -1 means it will load the total steps of the dataset# dataset
train_dataset: &train_datasetdata_loader:type: MindDatasetdataset_dir: "/home/ma-user/work/models/alpaca-fastchat2048.mindrecord"shuffle: Trueinput_columns: ["input_ids", "labels"]  # "input_ids", "labels" , labels are used in instruction finetune.num_parallel_workers: 8python_multiprocessing: Falsedrop_remainder: Truebatch_size: 2repeat: 1numa_enable: Falseprefetch_size: 1train_dataset_task:type: CausalLanguageModelDatasetdataset_config: *train_dataset
# if True, do evaluate during the training process. if false, do nothing.
# note that the task trainer should support _evaluate_in_training function.
do_eval: False# eval dataset
eval_dataset: &eval_datasetdata_loader:type: MindDatasetdataset_dir: "/home/ma-user/work/models/alpaca-fastchat2048.mindrecord"shuffle: Falseinput_columns: ["input_ids", "labels"]num_parallel_workers: 8python_multiprocessing: Falsedrop_remainder: Falserepeat: 1numa_enable: Falseprefetch_size: 1
eval_dataset_task:type: CausalLanguageModelDatasetdataset_config: *eval_datasetuse_parallel: False
# parallel context config
parallel:parallel_mode: 1 # 0-data parallel, 1-semi-auto parallel, 2-auto parallel, 3-hybrid parallelgradients_mean: Falseenable_alltoall: Falsefull_batch: Truesearch_mode: "sharding_propagation"enable_parallel_optimizer: Falsestrategy_ckpt_save_file: "./ckpt_strategy.ckpt"parallel_optimizer_config:gradient_accumulation_shard: Falseparallel_optimizer_threshold: 64
# default parallel of device num = 8 910A
parallel_config:data_parallel: 8model_parallel: 1pipeline_stage: 1use_seq_parallel: Falseoptimizer_shard: Falsemicro_batch_num: 1vocab_emb_dp: Truegradient_aggregation_group: 4
# when model parallel is greater than 1, we can set micro_batch_interleave_num=2, that may accelerate the train process.
micro_batch_interleave_num: 1# recompute config
recompute_config:recompute: Trueselect_recompute: Falseparallel_optimizer_comm_recompute: Falsemp_comm_recompute: Truerecompute_slice_activation: True# callbacks
callbacks:- type: MFLossMonitor- type: CheckpointMointorprefix: "llama_7b_lora"save_checkpoint_steps: 20000integrated_save: Falseasync_save: False- type: ObsMonitor# mindspore context init config
context:mode: 0 #0--Graph Mode; 1--Pynative Modedevice_target: "Ascend"enable_graph_kernel: Falsegraph_kernel_flags: "--disable_expand_ops=Softmax,Dropout --enable_parallel_fusion=true --reduce_fuse_depth=8 --enable_auto_tensor_inplace=true"max_call_depth: 10000max_device_memory: "31GB"save_graphs: Falsesave_graphs_path: "./graph"device_id: 0# model config
model:model_config:type: LlamaConfigbatch_size: 1 # add for increase predictseq_length: 2048hidden_size: 4096num_layers: 32num_heads: 32vocab_size: 32000multiple_of: 256rms_norm_eps: 1.0e-6bos_token_id: 1eos_token_id: 2pad_token_id: 0ignore_token_id: -100compute_dtype: "float16"layernorm_compute_dtype: "float32"softmax_compute_dtype: "float16"rotary_dtype: "float16"param_init_type: "float16"use_past: Falsepretrain_seqlen: 2048 # seqlen of the pretrain checkpoint: 2048 for llama and 4096 for llama2extend_method: "None" # support "None", "PI", "NTK"compute_in_2d: Falseuse_flash_attention: Falseoffset: 0use_past_shard: Falsecheckpoint_name_or_path: "llama_7b_lora"repetition_penalty: 1max_decode_length: 512top_k: 3top_p: 1do_sample: Falsepet_config:pet_type: lora# configuration of lorain_channels: 4096out_channels: 4096lora_rank: 16lora_alpha: 16lora_dropout: 0.05arch:type: LlamaForCausalLMWithLoraprocessor:return_tensors: mstokenizer:unk_token: '<unk>'bos_token: '<s>'eos_token: '</s>'pad_token: '<pad>'type: LlamaTokenizer# metric
metric:type: PerplexityMetric# wrapper cell config
runner_wrapper:type: MFTrainOneStepCellscale_sense:type: DynamicLossScaleUpdateCellloss_scale_value: 4294967296scale_factor: 2scale_window: 1000use_clip_grad: Trueeval_callbacks:- type: ObsMonitorauto_tune: False
filepath_prefix: './autotune'
autotune_per_step: 10profile: False
profile_start_step: 1
profile_stop_step: 10
init_start_profile: False
profile_communication: False
profile_memory: True
layer_scale: False
layer_decay: 0.65
lr_scale_factor: 256# cfts init config
remote_save_url: "Please input obs url on AICC platform."

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/106007.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

参加CSP-J第一轮后的感受

本人现在初二。作为一名学了4年多c的人&#xff0c;我一直都挺想考过CSP。于是&#xff0c;去年我就去考了。 当时初一&#xff0c;感觉自己实力不够&#xff0c;就只报了J组的。果不其然&#xff0c;63分&#xff0c;没过。 经过1年的苦练&#xff0c;今年又去考了。 J组78分&…

SVN报错fail to run the WC Db work queue associated with,清理失败,乱码的解决方式

替换掉 wc.db 文件即可 SVN报错fail to run the WC Db work queue associated with&#xff0c;清理失败&#xff0c;乱码的解决方式_svn failed to run the wc db-CSDN博客

Python滑动窗口算法:滑动窗口算法(4 by 4 sliding window price)

我知道滑动窗口算法的时间复杂度是 o&#xff08;N&#xff09;&#xff0c;但是可变大小的滑动窗口算法的时间复杂度是多少。 对于 e- 数组 [1,2,3,4,5,6] 当滑动窗口的大小为 1 时窗口-[1],[2],[3],[4],[5],[6] 当滑动窗口的大小为 2 时窗口-[1,2],[2,3],[3,4],[4,5],…

DamiBus v0.51 发布

DamiBus&#xff0c;专为本地多模块之间通讯解耦而设计&#xff08;尤其是未知模块、隔离模块、领域模块&#xff09;。零依赖&#xff0c;特适合 DDD。 特点 结合 Bus 与 RPC 的概念&#xff0c;可作事件分发&#xff0c;可作接口调用&#xff0c;可作响应订阅。 支持事务传…

CSS 复杂卡片/导航栏特效运用目录

主要是记录复杂卡片/导航栏相关的特效实践案例和实现思路。 章节名称完成度难度文章地址完整代码下载地址多曲面卡片实现完成复杂文章链接代码下载倒置边框半径卡片完成一般文章链接代码下载

再谈Java泛型

一.类型参数的约束 我们可以对泛型传进来的参数做一些约束&#xff0c;比如说 用extends表明传进来的参数类型必须是必须是某个类型的子类型或者本身 当然也可以用接口约束&#xff0c;也是用extends表明传进来的参数类型必须实现某个接口。用&连接&#xff0c;注意class…

Leetcode 2905. Find Indices With Index and Value Difference II

Leetcode 2905. Find Indices With Index and Value Difference II 1. 解题思路2. 代码实现 题目链接&#xff1a;2905. Find Indices With Index and Value Difference II 1. 解题思路 这一题我一开始思路有点想复杂了&#xff0c;因为这道题显然是要在index相距特定距离以…

python+深度学习+opencv实现植物识别算法系统 计算机竞赛

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的植物识别算法研究与实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;4分工作量&#xff1a;4分创新点&#xff1a;4分 &#x1f9ff; 更多…

论文阅读/写作扫盲

第一节&#xff1a;期刊科普 JCR分区和中科院分区是用于对期刊进行分类和评估的两种常见方法。它们的存在是为了帮助学术界和研究人员更好地了解期刊的学术质量、影响力和地位。 JCR分区&#xff08;Journal Citation Reports&#xff09;&#xff1a;JCR分区是由Clarivate Ana…

虹科方案 | AR助力仓储物流突破困境:规模化运营与成本节约

文章来源&#xff1a;虹科数字化AR 点击阅读原文&#xff1a;https://mp.weixin.qq.com/s/xis_I5orLb6RjgSokEhEOA 虹科方案一览 HongKe DigitalizationAR 当今的客户体验要求企业在人员、流程和产品之间实现全面的连接。为了提升整个组织的效率并提高盈利能力&#xff0c;物流…

一文解读如何应用 REST 对资源进行访问?

文章目录 一、REST 简介二、涉及注解2.1 RequestMapping2.2 PathVariable2.3 RestController2.4 GetMapping、PostMapping、PutMapping、DeleteMapping补充&#xff1a;PathVariable、RequestBody、RequestParam 区别与应用 三、REST风格案例 一、REST 简介 REST (Representat…

【2023】redis-stream配合spring的data-redis详细使用(包括广播和组接收)

目录 一、简介1、介绍2、对比 二、整合spring的data-redis实现1、使用依赖2、配置类2.1、配置RedisTemplate bean2.2、异常类 3、实体类3.1、User3.2、Book 4、发送消息4.1、RedisStreamUtil工具类4.2、通过延时队列线程池模拟发送消息4.3、通过http主动发送消息 5、&#x1f3…

docker network 组件内网

一、docker network指令详情 以下是一些常用的 Docker 网络管理指令&#xff1a; 列出可用的网络&#xff1a; $ docker network ls 该命令将显示所有可用的 Docker 网络&#xff0c;包括网络 ID、名称、驱动程序和范围等信息。 创建一个网络&#xff1a; $ docker network …

UWB承启定位基站

UWB承启定位基站 随着我们使用UWB做超高精度的定位项目越来越多&#xff0c;我们发现之前的定位基站完全站在二维或三维的角度去设计还是存在对应的缺陷&#xff0c;这个时候需要在很短的距离内安装多一个基站&#xff0c;对于用户来说&#xff0c;会觉得设备变多了&#xff0…

多目标鳟海鞘算法(Multi-objective Salp Swarm Algorithm,MSSA)求解微电网优化MATLAB

一、微网系统运行优化模型 微电网优化模型介绍&#xff1a; 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]李兴莘,张靖,何宇,等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程, 2021, 37(3):7 二、多目标鳟海鞘算法MSSA 多…

多线程并发篇---第十一篇

系列文章目录 文章目录 系列文章目录前言一、CAS的原理二、CAS有什么缺点吗?三、引用类型有哪些?有什么区别?前言 一、CAS的原理 CAS叫做CompareAndSwap,比较并交换,主要是通过处理器的指令来保证操作的原子性,它包含 三个操作数: 变量内存地址,V表示旧的预期值,A表示…

ABB机器人关于重定位移动讲解

关于机器人如何重定位移动&#xff0c;首先来看一下示教器上的重定位移动是在哪。 从图中所示的坐标位置和操纵杆方向得知&#xff0c;重定位的本质是绕X、Y、Z轴的旋转。那么实现跟摇杆一样的操作&#xff0c;就可以通过改变当前位置的欧拉角来实现&#xff0c;参考Rapid指令…

《Unity Shader 入门精要》笔记07

透明效果 为什么渲染顺序很重要Unity Shader的渲染顺序透明度测试透明度混合开启深度写入的半透明效果ShaderLab 的混合命令混合等式和参数混合操作常见的混合类型 双面渲染的透明效果透明度测试的双面渲染透明度混合的双面渲染 Unity中通常使用两种方法来实现透明效果&#xf…

openGauss学习笔记-99 openGauss 数据库管理-管理数据库安全-客户端接入认证之配置文件参考

文章目录 openGauss学习笔记-99 openGauss 数据库管理-管理数据库安全-客户端接入认证之配置文件参考99.1 参数说明99.2 认证方式 openGauss学习笔记-99 openGauss 数据库管理-管理数据库安全-客户端接入认证之配置文件参考 99.1 参数说明 表 1 参数说明 参数名称描述取值范…

swift ui 布局 ——Stack(HStack、VStack、ZStack)

一、HStack 水平布局 将其子视图排列在水平线上 import Foundation import SwiftUI struct MyView: View {var body: some View {HStack{Text("text")Image("yuyin").resizable().frame(width: 102,height: 80)}} } 默认子视图是水平中心对齐的,可添加al…