OpenCV实现人脸关键点检测

目录

实现过程

1,代码解读

1.1 导入工具包

1.2导入所需图像,以及训练好的人脸预测模型

1.3 将 dlib 的关键点对象转换为 NumPy 数组,以便后续处理

1.4图像上可视化面部关键点

1.5# 读取输入数据,预处理

1.6进行人脸检测

1.7遍历检测到的框

1.8遍历每个面部

2,所有代码

3,结果展示


实现过程

  1. 导入工具包:首先导入所需的Python库,包括dlib用于人脸检测和关键点定位,以及OpenCV用于图像处理。

  2. 参数解析:使用argparse库解析命令行参数,以指定面部关键点预测器的路径和输入图像的路径。

  3. 定义关键点范围:定义了两个字典(FACIAL_LANDMARKS_68_IDXS和FACIAL_LANDMARKS_5_IDXS),它们包含了不同面部部位的关键点索引范围,用于标识人脸的不同部分。

  4. 图像预处理:加载输入图像,将其缩放为指定宽度(500像素),并将其转换为灰度图像。这些预处理步骤有助于提高人脸检测的性能和稳定性。

  5. 人脸检测:使用dlib库的人脸检测器检测灰度图像中的人脸。检测结果是一个包含人脸边界框的列表。

  6. 遍历检测到的人脸:对于每个检测到的人脸,使用面部关键点定位器获取关键点的坐标。然后,对不同的面部部位进行循环处理。

  7. 绘制关键点:为了可视化,代码使用OpenCV在图像上绘制关键点。每个关键点以红色圆圈的形式标记在图像上,并标注了各个部位的名称。

  8. 提取ROI区域:在每个部位上,代码还提取了一个感兴趣区域(ROI),这是通过计算关键点的包围矩形来实现的。ROI区域随后可以用于进一步的分析或显示。

  9. 调整ROI尺寸:最后,代码调整了ROI区域的尺寸,以确保它们具有一致的宽度(250像素),同时保持高宽比例不变。

1,代码解读

1.1 导入工具包

  • collections.OrderedDict: 用于创建有序的字典。
  • numpy: 用于处理数值计算。
  • argparse: 用于处理命令行参数。
  • dlib: 一个图像处理库,用于人脸检测和关键点定位。
  • cv2 (OpenCV): 用于图像处理。

1.2导入所需图像,以及训练好的人脸预测模型

# 参数
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True,
help="path to input image")

1.3 将 dlib 的关键点对象转换为 NumPy 数组,以便后续处理

'''这个函数用于将 dlib 的关键点对象转换为 NumPy 数组,以便后续处理。
它遍历关键点对象中的每个点,提取其 x 和 y 坐标,然后将坐标保存在 NumPy 数组中。'''
def shape_to_np(shape, dtype="int"):
# 创建68*2
coords = np.zeros((shape.num_parts, 2), dtype=dtype)
# 遍历每一个关键点
# 得到坐标
for i in range(0, shape.num_parts):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords

1.4图像上可视化面部关键点

这个函数用于在图像上可视化面部关键点。
它接受输入图像、关键点坐标、可选颜色和透明度参数。
在输入图像上绘制关键点,可以为不同面部部位指定不同的颜色。
最后,将可视化的图像与原图像混合以得到输出图像。'''
def visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):
# 创建两个copy
# overlay and one for the final output image
overlay = image.copy()
output = image.copy()
# 设置一些颜色区域
if colors is None:
colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),
(168, 100, 168), (158, 163, 32),
(163, 38, 32), (180, 42, 220)]
# 遍历每一个区域
for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):
# 得到每一个点的坐标
(j, k) = FACIAL_LANDMARKS_68_IDXS[name]
pts = shape[j:k]
# 检查位置
if name == "jaw":
# 用线条连起来
for l in range(1, len(pts)):
ptA = tuple(pts[l - 1])
ptB = tuple(pts[l])
cv2.line(overlay, ptA, ptB, colors[i], 2)
# 计算凸包
else:
hull = cv2.convexHull(pts)
cv2.drawContours(overlay, [hull], -1, colors[i], -1)
# 叠加在原图上,可以指定比例
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
return output

1.5# 读取输入数据,预处理

image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
width=500#这一行定义了一个新的宽度,即将图像调整为的目标宽度。
r = width / float(w)
'''这一行创建一个新的图像维度 dim,它是一个元组,包含了目标宽度 width 和一个计算出的新高度。
新高度是原始高度 h 乘以比例 r 并取整数部分'''
dim = (width, int(h * r))
'''最后一行使用OpenCV的 cv2.resize 函数,
将原始图像 image 调整为新的维度 dim,以实现目标宽度为500像素,同时保持高宽比例不变。
interpolation 参数指定了插值方法,这里使用了 cv2.INTER_AREA,它适合缩小图像。'''
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

1.6进行人脸检测

'''1 是一个可选参数,它控制人脸检测的程度。
通常,值为 1 表示对图像进行一次粗略的检测。
你也可以尝试使用不同的值,以获得更灵敏或更宽松的人脸检测结果'''
rects = detector(gray, 1)

1.7遍历检测到的框

for (i, rect) in enumerate(rects):
# 对人脸框进行关键点定位
# 转换成ndarray
shape = predictor(gray, rect)
shape = shape_to_np(shape)

1.8遍历每个面部

# 遍历每一个部分
#这段代码针对每个面部部位执行一系列操作
for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():
clone = image.copy() #这一行创建了图像的一个副本 clone,以便在副本上绘制标记,以保持原始图像不受影响。
cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 255), 2)
'''
这一行在图像上标记面部部位的名称,使用 OpenCV 的 cv2.putText 函数。
name 是部位的名称。
(10, 30) 是文本的起始坐标。
cv2.FONT_HERSHEY_SIMPLEX 是用于文本的字体。
0.7 是字体的比例因子。
(0, 0, 255) 是文本的颜色(蓝色)。
2 是文本的线宽。'''

# 根据位置画点
for (x, y) in shape[i:j]:
cv2.circle(clone, (x, y), 3, (0, 0, 255), -1)
''' 这个循环遍历给定部位的关键点坐标 (x, y),并在 clone 图像上绘制红色的小圆圈,以标记关键点的位置。
(x, y) 是关键点的坐标。
3 是圆圈的半径。
(0, 0, 255) 是红色的颜色。'''

# 提取ROI区域
(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))

2,所有代码

#导入工具包
from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2#https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
#http://dlib.net/files/# 参数
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,help="path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True,help="path to input image")
args = vars(ap.parse_args())
'''这两个字典包含了不同面部部位的关键点索引范围,用于标识人脸的不同部分,例如嘴巴、眼睛、鼻子等。'''
FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))
])FACIAL_LANDMARKS_5_IDXS = OrderedDict([("right_eye", (2, 3)),("left_eye", (0, 1)),("nose", (4))
])
'''这个函数用于将 dlib 的关键点对象转换为 NumPy 数组,以便后续处理。
它遍历关键点对象中的每个点,提取其 x 和 y 坐标,然后将坐标保存在 NumPy 数组中。'''
def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coords
'''这个函数用于在图像上可视化面部关键点。它接受输入图像、关键点坐标、可选颜色和透明度参数。在输入图像上绘制关键点,可以为不同面部部位指定不同的颜色。最后,将可视化的图像与原图像混合以得到输出图像。'''
def visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):# 创建两个copy# overlay and one for the final output imageoverlay = image.copy()output = image.copy()# 设置一些颜色区域if colors is None:colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),(168, 100, 168), (158, 163, 32),(163, 38, 32), (180, 42, 220)]# 遍历每一个区域for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):# 得到每一个点的坐标(j, k) = FACIAL_LANDMARKS_68_IDXS[name]pts = shape[j:k]# 检查位置if name == "jaw":# 用线条连起来for l in range(1, len(pts)):ptA = tuple(pts[l - 1])ptB = tuple(pts[l])cv2.line(overlay, ptA, ptB, colors[i], 2)# 计算凸包else:hull = cv2.convexHull(pts)cv2.drawContours(overlay, [hull], -1, colors[i], -1)# 叠加在原图上,可以指定比例cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)return output# 加载人脸检测与关键点定位
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])# 读取输入数据,预处理
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
width=500#这一行定义了一个新的宽度,即将图像调整为的目标宽度。
r = width / float(w)
'''这一行创建一个新的图像维度 dim,它是一个元组,包含了目标宽度 width 和一个计算出的新高度。
新高度是原始高度 h 乘以比例 r 并取整数部分'''
dim = (width, int(h * r))
'''最后一行使用OpenCV的 cv2.resize 函数,
将原始图像 image 调整为新的维度 dim,以实现目标宽度为500像素,同时保持高宽比例不变。
interpolation 参数指定了插值方法,这里使用了 cv2.INTER_AREA,它适合缩小图像。'''
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 人脸检测
'''1 是一个可选参数,它控制人脸检测的程度。
通常,值为 1 表示对图像进行一次粗略的检测。
你也可以尝试使用不同的值,以获得更灵敏或更宽松的人脸检测结果'''
rects = detector(gray, 1)# 遍历检测到的框
for (i, rect) in enumerate(rects):# 对人脸框进行关键点定位# 转换成ndarrayshape = predictor(gray, rect)shape = shape_to_np(shape)# 遍历每一个部分#这段代码针对每个面部部位执行一系列操作for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():clone = image.copy() #这一行创建了图像的一个副本 clone,以便在副本上绘制标记,以保持原始图像不受影响。cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)'''这一行在图像上标记面部部位的名称,使用 OpenCV 的 cv2.putText 函数。name 是部位的名称。(10, 30) 是文本的起始坐标。cv2.FONT_HERSHEY_SIMPLEX 是用于文本的字体。0.7 是字体的比例因子。(0, 0, 255) 是文本的颜色(蓝色)。2 是文本的线宽。'''# 根据位置画点for (x, y) in shape[i:j]:cv2.circle(clone, (x, y), 3, (0, 0, 255), -1)'''    这个循环遍历给定部位的关键点坐标 (x, y),并在 clone 图像上绘制红色的小圆圈,以标记关键点的位置。(x, y) 是关键点的坐标。3 是圆圈的半径。(0, 0, 255) 是红色的颜色。'''# 提取ROI区域(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))roi = image[y:y + h, x:x + w](h, w) = roi.shape[:2]width=250r = width / float(w)dim = (width, int(h * r))roi = cv2.resize(roi, dim, interpolation=cv2.INTER_AREA)# 显示每一部分cv2.imshow("ROI", roi)cv2.imshow("Image", clone)cv2.waitKey(0)# 展示所有区域output = visualize_facial_landmarks(image, shape)cv2.imshow("Image", output)cv2.waitKey(0)

3,结果展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/105044.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Win10电脑无线网卡的移动热点无法开启问题

一、目的 利用无线网卡连接网络,然后又用无线网卡通过移动热点分享该网络。 移动热点,简单地说,就是将台式机或笔记本的 Internet 连接转化成 WIFI 信号以供移动设备无线上网的功能,硬件前提是电脑须安装有无线网卡。 二、问题 …

JVM第三讲:JVM 基础-字节码的增强技术详解

JVM 基础-字节码的增强技术详解 本文是JVM第三讲,JVM 基础-字节码的增强技术。在上文中,着重介绍了字节码的结构,这为我们了解字节码增强技术的实现打下了基础。字节码增强技术就是一类对现有字节码进行修改或者动态生成全新字节码文件的技术…

Stable Diffusion 动画animatediff-cli-prompt-travel

基于 sd-webui-animatediff 生成动画或者动态图的基础功能,animatediff-cli-prompt-travel突破了部分限制,能让视频生成的时间更长,并且能加入controlnet和提示词信息控制每个片段,并不像之前 sd-webui-animatediff 的一套关键词控制全部画面。 动图太大传不上来,凑合看每…

10月14日,每日信息差

今天是2023年10月14日,以下是为您准备的8条信息差 第一、中国石油摘得日本碳信用实货交易首单。据了解,日本交易所集团旗下的东京证券交易所11日宣布,交易二氧化碳排放量的“碳信用市场”正式开始运营 第二、前三季度全国铁路投产新线1402公…

【C++】哈希对unordered_map和unodered_set的封装

🚀write in front🚀 📜所属专栏: C学习 🛰️博客主页:睿睿的博客主页 🛰️代码仓库:🎉VS2022_C语言仓库 🎡您的点赞、关注、收藏、评论,是对我最大…

Godot 单元测试

前言 单元测试是我们常用的功能,Godot作为一个游戏,单元测试和热重载是我们常用的功能。这里我们讲解最简单的单元测试的情况。 Godot 配置 我们添加一个最简单的节点,挂载一个最简单的脚本。 添加测试方法(只能是静态方法&…

【Python】Python语言基础(中)

第十章 Python的数据类型 基本数据类型 数字 整数 整数就是整数 浮点数 在编程中,小数都称之为浮点数 浮点数的精度问题 print(0.1 0.2) --------------- 0.30000000000000004 ​​1.可以通过round()函数来控制小数点后位数 round(a b),则表示…

Linux该如何学习,给你支招

如果你已经确定对 Linux 产生了兴趣,那么接下来我们介绍一下学习 Linux 的方法。这只是自己关于学习Linux的建议。 一、如何去学习 学习大多类似庖丁解牛,对事物的认识一般都是由浅入深、由表及里的过程,循序才能渐进。学习 Linux 同样要有一…

关于RNNoise、webrtc_ns、三角带通滤波器、对数能量

语音特征参数MFCC提取过程详解 其中讲解了:三角带通滤波器 、计算每个滤波器组输出的对数能量、对数能量、经离散余弦变换(DCT)得到MFCC系数 推荐阅读某乎这位大佬的全部文章: 下面是几篇出自这位大佬的很好的文章: …

SSH 基础学习使用

什么是SSH 1.SSH SSH(Secure Shell) 是较可靠,专为远程登录会话和其他网络服务提供安全性的协议,利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。 实际应用中,主要用于保证远程登录和远程通信的安全&#…

微信小程序入门讲解【超详细】

一. 微信小程序简介 1.1 什么是小程序 2017年度百度百科十大热词之一 微信小程序(wei xin xiao cheng xu),简称小程序,英文名Mini Program,是一种不需要下载安装即可使用的应用( 张小龙对其的定义是无需安装&#xf…

如何创建自定义前端组件?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

VScode运行C/C++

VScode运行C/C VScode的安装这里不讲 一、mingw64的下载 二、VS code打开文件夹与创建C文件 ----------------这一步给萌新看,有C和VScode的基础可跳过---------------- 1.创建一个文件夹 2.vscode打开刚刚创建的文件夹 3.新建文件,在输入文件名1.c后…

Unity实现摄像机向屏幕中间发射射线射击物体

1.创建一个准星放在屏幕中间 外部找个PNG透明图,拖到Unity文件夹,右上角改成精灵sprite2d 2.添加到UI画布 3.写脚本 首先,我们需要引入一些 "工具",就像我们在玩游戏时要先下载游戏客户端一样。这里的 "工具&quo…

iOS- flutter flavor 多环境Configurations配置

一、点击PROJECT的Runner,选择Info选项,在Configurations下方的号添加不同环境的配置,如下图: 二、选择TAGETS的Runner项目,选择Build Settings选项,在输入框输入package,为不同环境配置相应的…

UML组件图综合指南:设计清晰、可维护的软件系统

介绍: UML(Unified Modeling Language)组件图是软件系统设计中的重要工具,用于描绘系统的物理结构和组件之间的关系。在软件工程中,通过创建清晰的组件图,团队能够更好地理解系统的模块化结构和组织关系&a…

二十四、【参考素描三大面和五大调】

文章目录 三种色面(黑白灰)五种色调 这个可以参考素描对物体受光的理解:素描调子的基本规律与素描三大面五大调物体的明暗规律 三种色面(黑白灰) 如下图所示,我们可以看到光源是从亮面所对应的方向射过来的,所以我们去分析图形的时候,首先要…

C# excel操作

使用库 Spire.Xls 下载 示例数据 代码示例 1.删除列 代码 private static void DeleteExcelColumns1(string excelPath) {if (excelPath.Length 0) {Console.WriteLine("excel文件路径为空");}else{Console.WriteLine("删除列方法1:保留第一列&…

好的摄影师都会iPhone 8和iOS 11的这三项功能

众所周知,苹果的手机像素一直处于智能手机摄影的前沿,在即将到来的九月,苹果公司准备证明他拥有最好的相机技术。 虽然我们还不知道iPhone 8摄像头的具体细节,如几百万像素、光学变焦是多少,但我们确实知道苹果正在给i…

Webmin(CVE-2019-15107)远程命令执行漏洞复现

漏洞编号 CVE-2019-15107 webmin介绍 什么是webmin Webmin是目前功能最强大的基于Web的Unix系统管理工具。管理员通过浏览器访问Webmin的各种管理功能并完成相应的管理动作http://www.webmin.com/Webmin 是一个用 Perl 编写的基于浏览器的管理应用程序。是一个基于Web的界面…