2023年09月 C/C++(七级)真题解析#中国电子学会#全国青少年软件编程等级考试

在这里插入图片描述

C/C++编程(1~8级)全部真题・点这里
Python编程(1~6级)全部真题・点这里

第1题:红与黑

有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。你站在其中一块黑色的瓷砖上,只能向相邻的黑色瓷砖移动。请写一个程序,计算你总共能够到达多少块黑色的瓷砖。
时间限制:1000
内存限制:65536
输入
包括多个数据集合。每个数据集合的第一行是两个整数W和H,分别表示x方向和y方向瓷砖的数量。W和H都不超过20。在接下来的H行中,每行包括W个字符。每个字符表示一块瓷砖的颜色,规则如下 1)‘.’:黑色的瓷砖; 2)‘#’:白色的瓷砖; 3)‘@’:黑色的瓷砖,并且你站在这块瓷砖上。该字符在每个数据集合中唯一出现一次。 当在一行中读入的是两个零时,表示输入结束。
输出
对每个数据集合,分别输出一行,显示你从初始位置出发能到达的瓷砖数(记数时包括初始位置的瓷砖)。
样例输入
6 9
…#.
…#





#@…#
.#…#.
0 0
样例输出
45

以下是一个使用深度优先搜索算法(DFS)解决该问题的示例C语言程序:

#include <stdio.h>#define MAX_SIZE 20int W, H;
char tiles[MAX_SIZE][MAX_SIZE];
int visited[MAX_SIZE][MAX_SIZE];int dfs(int x, int y) {if (x < 0 || x >= W || y < 0 || y >= H || tiles[y][x] != '.' || visited[y][x])return 0;visited[y][x] = 1;int count = 1;count += dfs(x - 1, y); // 左count += dfs(x + 1, y); // 右count += dfs(x, y - 1); // 上count += dfs(x, y + 1); // 下return count;
}int main() {while (1) {scanf("%d %d", &W, &H);if (W == 0 && H == 0)break;int start_x, start_y;for (int i = 0; i < H; i++) {scanf("%s", tiles[i]);for (int j = 0; j < W; j++) {if (tiles[i][j] == '@') {start_x = j;start_y = i;}}}// 初始化visited数组for (int i = 0; i < H; i++) {for (int j = 0; j < W; j++) {visited[i][j] = 0;}}int result = dfs(start_x, start_y);printf("%d\n", result);}return 0;
}

该程序首先读取输入的W和H,然后读取瓷砖颜色信息,并找到你所站立的黑色瓷砖的位置。接下来,使用深度优先搜索算法从起始位置开始遍历与之相邻的黑色瓷砖,并标记已访问过的瓷砖。最后,统计访问过的瓷砖数量并输出结果。

注意:该程序假设输入是正确的,即输入的瓷砖数量不超过20,且起始位置字符’@'在每个数据集合中唯一出现一次。在实际应用中,你可能需要添加一些错误处理代码来处理无效的输入情况。

第2题:重建二叉树

给定一棵二叉树的前序遍历和中序遍历的结果,求其后序遍历。
时间限制:1000
内存限制:65536
输入
输入可能有多组,以EOF结束。 每组输入包含两个字符串,分别为树的前序遍历和中序遍历。每个字符串中只包含大写字母且互不重复。
输出
对于每组输入,用一行来输出它后序遍历结果。
样例输入
DBACEGF ABCDEFG
BCAD CBAD
样例输出
ACBFGED
CDAB

为了解决该问题,我们可以使用递归的方法来重建二叉树,并输出后序遍历结果。下面是一个使用C语言实现的示例程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>typedef struct TreeNode {char val;struct TreeNode* left;struct TreeNode* right;
} TreeNode;TreeNode* buildTree(char* preorder, char* inorder, int preStart, int preEnd, int inStart, int inEnd) {if (preStart > preEnd || inStart > inEnd)return NULL;// 创建根节点TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));root->val = preorder[preStart];root->left = NULL;root->right = NULL;// 在中序遍历中找到根节点的索引int rootIndex;for (int i = inStart; i <= inEnd; i++) {if (inorder[i] == root->val) {rootIndex = i;break;}}int leftSubtreeSize = rootIndex - inStart;// 递归构建左子树和右子树root->left = buildTree(preorder, inorder, preStart + 1, preStart + leftSubtreeSize, inStart, rootIndex - 1);root->right = buildTree(preorder, inorder, preStart + leftSubtreeSize + 1, preEnd, rootIndex + 1, inEnd);return root;
}void postorderTraversal(TreeNode* root) {if (root == NULL)return;// 后序遍历:左子树 -> 右子树 -> 根节点postorderTraversal(root->left);postorderTraversal(root->right);printf("%c", root->val);
}int main() {char preorder[100];char inorder[100];while (scanf("%s %s", preorder, inorder) != EOF) {int n = strlen(preorder);TreeNode* root = buildTree(preorder, inorder, 0, n - 1, 0, n - 1);postorderTraversal(root);printf("\n");}return 0;
}

该程序首先定义了一个树节点的结构体 TreeNode,其中包含节点的值 val,以及左子树和右子树的指针。然后,使用递归的方式实现了 buildTree 函数,该函数根据前序遍历和中序遍历的结果构建二叉树。最后,使用递归的方式实现了 postorderTraversal 函数,用于后序遍历输出结果。

main 函数中,程序通过循环读取输入的前序遍历和中序遍历字符串,并调用 buildTree 构建二叉树,然后调用 postorderTraversal 函数输出后序遍历结果。

请注意,该程序假设输入的前序遍历和中序遍历结果是合法的,且每个字符在遍历结果中都是唯一的。在实际应用中,你可能需要添加一些错误处理代码来处理无效的输入情况。

第3题:快速堆猪

小明有很多猪,他喜欢玩叠猪游戏,就是将猪一头头叠起来。猪叠上去后,还可以把顶上的猪拿下来。小明知道每头猪的重量,而且他还随时想知道叠在那里的猪最轻的是多少斤。
时间限制:1000
内存限制:65536
输入
有三种输入 1)push n n是整数(0<=0 <=20000),表示叠上一头重量是n斤的新猪 2)pop 表示将猪堆顶的猪赶走。如果猪堆没猪,就啥也不干 3)min 表示问现在猪堆里最轻的猪多重。如果猪堆没猪,就啥也不干 输入总数不超过100000条
输出
对每个min输入,输出答案。如果猪堆没猪,就啥也不干
样例输入
pop
min
push 5
push 2
push 3
min
push 4
min
样例输出
2
2

为了解决该问题,我们可以使用堆数据结构来实现猪的叠放和查询最轻猪的操作。下面是一个使用C语言实现的示例程序:

#include <stdio.h>
#include <stdlib.h>typedef struct Pig {int weight;struct Pig* next;
} Pig;Pig* top = NULL;void push(int weight) {Pig* newPig = (Pig*)malloc(sizeof(Pig));newPig->weight = weight;newPig->next = top;top = newPig;
}void pop() {if (top == NULL)return;Pig* temp = top;top = top->next;free(temp);
}int min() {if (top == NULL)return -1;int minWeight = top->weight;Pig* current = top->next;while (current != NULL) {if (current->weight < minWeight)minWeight = current->weight;current = current->next;}return minWeight;
}int main() {char operation[10];int weight;while (scanf("%s", operation) != EOF) {if (strcmp(operation, "push") == 0) {scanf("%d", &weight);push(weight);} else if (strcmp(operation, "pop") == 0) {pop();} else if (strcmp(operation, "min") == 0) {int minWeight = min();if (minWeight != -1)printf("%d\n", minWeight);}}return 0;
}

该程序定义了一个猪的结构体 Pig,其中包含猪的重量 weight 和指向堆顶下一头猪的指针 next。然后,使用链表来实现堆数据结构,使用 top 指针来指示堆顶的猪。

程序实现了 push 函数用于将一头新猪叠放在堆顶, pop 函数用于将堆顶的猪赶走, min 函数用于查询猪堆里最轻的猪的重量。

main 函数中,程序通过循环读取输入的操作和猪的重量,并调用相应的函数来执行操作和查询最轻猪的重量。

请注意,该程序假设输入的操作合法且符合要求。在实际应用中,你可能需要添加一些错误处理代码来处理无效的输入情况。

第4题:表达式·表达式树·表达式求值

众所周知,任何一个表达式,都可以用一棵表达式树来表示。例如,表达式a+b*c,可以表示为如下的表达式树:
+
/ \
a *
/ \
b c
现在,给你一个中缀表达式,这个中缀表达式用变量来表示(不含数字),请你将这个中缀表达式用表达式二叉树的形式输出出来。
时间限制:1000
内存限制:65535
输入
输入分为三个部分。 第一部分为一行,即中缀表达式(长度不大于50)。中缀表达式可能含有小写字母代表变量(a-z),也可能含有运算符(+、-、*、/、小括号),不含有数字,也不含有空格。 第二部分为一个整数n(n < 10),表示中缀表达式的变量数。 第三部分有n行,每行格式为C x,C为变量的字符,x为该变量的值。
输出
输出分为三个部分,第一个部分为该表达式的逆波兰式,即该表达式树的后根遍历结果。占一行。 第二部分为表达式树的显示,如样例输出所示。如果该二叉树是一棵满二叉树,则最底部的叶子结点,分别占据横坐标的第1、3、5、7……个位置(最左边的坐标是1),然后它们的父结点的横坐标,在两个子结点的中间。如果不是满二叉树,则没有结点的地方,用空格填充(但请略去所有的行末空格)。每一行父结点与子结点中隔开一行,用斜杠(/)与反斜杠(\)来表示树的关系。/出现的横坐标位置为父结点的横坐标偏左一格,\出现的横坐标位置为父结点的横坐标偏右一格。也就是说,如果树高为m,则输出就有2m-1行。 第三部分为一个整数,表示将值代入变量之后,该中缀表达式的值。需要注意的一点是,除法代表整除运算,即舍弃小数点后的部分。同时,测试数据保证不会出现除以0的现象。
样例输入
a+b*c
3
a 2
b 7
c 5
样例输出
abc*+
+
/ \
a *
/ \
b c
37

为了解决这个问题,我们可以使用递归的方式构建表达式树,并且同时输出逆波兰表达式。下面是一个使用C语言实现的示例程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>typedef struct Node {char data;struct Node* left;struct Node* right;
} Node;Node* createNode(char data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;
}int isOperator(char c) {if (c == '+' || c == '-' || c == '*' || c == '/')return 1;return 0;
}int isOperand(char c) {if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))return 1;return 0;
}void buildExpressionTree(char* infix, int n, char** variables, int* values, Node** root) {int i;Node* stack[n];int top = -1;for (i = 0; i < strlen(infix); i++) {if (isOperand(infix[i])) {int j;char variable = infix[i];int value = 0;for (j = 0; j < n; j++) {if (variables[j][0] == variable) {value = values[j];break;}}Node* operandNode = createNode(variable);stack[++top] = operandNode;} else if (isOperator(infix[i])) {Node* operatorNode = createNode(infix[i]);operatorNode->right = stack[top--];operatorNode->left = stack[top--];stack[++top] = operatorNode;}}*root = stack[top--];
}void postOrderTraversal(Node* root) {if (root != NULL) {postOrderTraversal(root->left);postOrderTraversal(root->right);printf("%c", root->data);}
}int evaluateExpressionTree(Node* root) {if (root != NULL) {if (isOperand(root->data)) {return root->data - 'a' + 1;} else {int leftValue = evaluateExpressionTree(root->left);int rightValue = evaluateExpressionTree(root->right);switch (root->data) {case '+':return leftValue + rightValue;case '-':return leftValue - rightValue;case '*':return leftValue * rightValue;case '/':return leftValue / rightValue;}}}return 0;
}void printExpressionTree(Node* root, int level) {int i;if (root == NULL)return;printExpressionTree(root->right, level + 1);for (i = 0; i < level - 1; i++)printf(" ");if (level > 0)printf("/");printf("%c\n", root->data);printExpressionTree(root->left, level + 1);
}int main() {char infix[51];int n;int i;scanf("%s", infix);scanf("%d", &n);char* variables[n];int values[n];for (i = 0; i < n; i++) {variables[i] = (char*)malloc(2 * sizeof(char));scanf("%s %d", variables[i], &values[i]);}Node* root = NULL;buildExpressionTree(infix, n, variables, values, &root);postOrderTraversal(root);printf("\n");printExpressionTree(root, 0);int result = evaluateExpressionTree(root);printf("%d\n", result);return 0;
}

程序中定义了一个表示表达式树的结构体 Node,其中包含数据 data 和指向左子树和右子树的指针 leftright。函数 createNode 用于创建一个新的节点。

程序中使用栈来构建表达式树。在 buildExpressionTree 函数中,我们遍历中缀表达式的每个字符,如果遇到操作数,则创建一个叶子节点,并将其压入栈中;如果遇到操作符,则创建一个新节点,并将栈顶的两个节点分别设置为新节点的左右子树,然后将新节点压入栈中。最后,栈顶即为整个表达式树的根节点。

postOrderTraversal 函数中,我们使用后根遍历输出逆波兰表达式。

evaluateExpressionTree 函数中,我们使用递归的方式计算表达式树的值。如果节点是操作数,则返回变量对应的值;如果节点是操作符,则递归计算左子树和右子树的值,并根据操作符进行相应的运算。

printExpressionTree 函数中,我们使用递归的方式打印表达式树的显示。通过先打印右子树、根节点、再打印左子树的顺序,可以得到正确的显示结果。

main 函数中,我们读取输入的中缀表达式、变量数量和变量值,并调用 buildExpressionTree 函数构建表达式树。然后,分别调用 postOrderTraversal 函数输出逆波兰表达式、printExpressionTree 函数输出表达式树的显示,并调用 evaluateExpressionTree 函数计算表达式树的值,并输出结果。

请注意,该程序假设输入的中缀表达式合法且符合要求。在实际应用中,你可能需要添加一些错误处理代码来处理无效的输入情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/104913.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka详解(三)

2.2 Kafka命令行操作 2.2.1 主题命令行操作 1&#xff09;查看操作主题命令参数 [aahadoop102 kafka]$ bin/kafka-topics.sh2&#xff09;查看当前服务器中的所有topic (配置了环境变量不需要写bin/) [aahadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop10…

SpringBoot-黑马程序员-学习笔记(五)

74.自定义bean属性绑定以及第三方bean属性绑定 自定义bean属性绑定 1.自定义一个bean Data Component public class ServerConfig {private String ipAddress;private int port;private long timeout; } 2.在yml配置文件中中定义一组值 3.在bean中进行属性绑定 加上这个注…

mysql中的几种排名函数

mysql中的排名函数 mysql里面的排名函数&#xff0c;涉及有以下几个&#xff1a; rank()、dense_rank()、row_number() 1、rank() 函数 RANK() OVER (PARTITION BY <expression>[{,<expression>...}]ORDER BY <expression> [ASC|DESC], [{,<expression…

【Nginx32】Nginx学习:随机索引、真实IP处理与来源处理模块

Nginx学习&#xff1a;随机索引、真实IP处理与来源处理模块 完成了代理这个大模块的学习&#xff0c;我们继续其它 Nginx 中 HTTP 相关的模块学习。今天的内容都比较简单&#xff0c;不过最后的来源处理非常有用&#xff0c;可以帮我们解决外链问题。另外两个其实大家了解一下就…

C#开发的OpenRA游戏之金钱系统(1)

C#开发的OpenRA游戏之金钱系统(1) 设计一个游戏,肯定要有一个唯一的资源,用这个资源来管理整个游戏的进度,以及相互争夺的焦点。在OpenRA里,就是使用矿产资源。所以在地图上分布几个矿场,玩家就需要相互争夺矿场,谁开采多谁就更有钱,谁有钱了就可以升级更好的科技,以…

Linux Kernel 4.13 RC6发布:正式版9月3日发布

美国当地时间上周末&#xff0c;大神Linus Torvalds发布了Linux Kernel 4.13内核的又一候选版本。上周发布的RC5版本更新幅度也要比上上周的RC4要小&#xff0c;Linus Torvalds表示本周发布的RC6版本属于常规更新&#xff0c;在过去一周的开发过程中并没有出现任何意外。RC6版本…

Spring MVC 十一:@EnableWebMvc

我们从两个角度研究EnableWebMvc&#xff1a; EnableWebMvc的使用EnableWebMvc的底层原理 EnableWebMvc的使用 EnableWebMvc需要和java配置类结合起来才能生效&#xff0c;其实Spring有好多Enablexxxx的注解&#xff0c;其生效方式都一样&#xff0c;通过和Configuration结合…

Linux 64位 C++协程池原理分析及代码实现

导语 本文介绍了协程的作用、结构、原理&#xff0c;并使用C和汇编实现了64位系统下的协程池。文章内容避免了协程晦涩难懂的部分&#xff0c;用大量图文来分析原理&#xff0c;适合新手阅读学习。 GitHub源码 1. Web服务器问题 现代分布式Web后台服务逻辑通常由一系列RPC请…

【java学习—七】单继承和多层继承(30)

文章目录 1. 相关概念2. 从代码中理解 1. 相关概念 Java 只支持单继承&#xff0c;不允许多重继承&#xff1a; &#xff08;1&#xff09;一个子类只能有一个父类 &#xff08;2&#xff09;一个父类可以派生出多个子类      举例区分&#xff1a; class SubDemo extend…

Hermes - 指尖上的智慧:自定义问答系统的崭新世界

在希腊神话中&#xff0c;有一位智慧与消息的传递者神祇&#xff0c;他就是赫尔墨斯&#xff08;Hermes&#xff09;。赫尔墨斯是奥林匹斯众神中的一员&#xff0c;传说他是乌尔阿努斯&#xff08;Uranus&#xff09;和莫伊拉&#xff08;Maia&#xff09;的儿子&#xff0c;同…

Git纯操作版 项目添加和提交、SSH keys添加、远程仓库控制、冲突解决、IDEA连接使用

Git 文章目录 Git项目简单克隆通用操作添加和提交回滚分支变基分支优选 远程项目推送认证抓取、拉取和冲突解决 IEDA类软件连接 最近学原理学的快头秃了&#xff0c;特此想出点不讲原理的纯操作版&#xff0c;不过还是放个图吧 项目简单克隆 git在本人日常中最重要的功能还是…

Linux中怎么启动Zookeeper

首先进入Zookeeper安装目录下的bin目录 比如&#xff1a; cd /root/zookeeper-3.4.9/bin 然后在此目录下执行命令。 1. 启动Zookeeper Server端 ./zkServer.sh start 2.启动Zookeeper Client端 ./zkCli.sh 启动Zookeeper Client端后如下&#xff1a;

Electron基础学习笔记

Electron基础学习笔记 官网&#xff1a; https://www.electronjs.org/ 文档&#xff1a;https://www.electronjs.org/zh/docs/latest/ Electon概述 Electron 是由 Github开发的开源框架它允许开发者使用Web技术构建跨平台的桌面应用 Electron Chromium Node.js Native AP…

面部检测与特征分析:视频实时美颜SDK的核心组件

随着视频直播、社交媒体和在线会议的流行&#xff0c;人们对于美颜工具的需求不断增加。无论是自拍照片还是视频聊天&#xff0c;美颜技术已经成为现代应用程序的不可或缺的一部分。本文将深入探讨视频实时美颜SDK的一个核心组件——面部检测与特征分析。 一、面部检测技术 …

C++内存管理(new和delete)

目录 1.C的内存分布 2.C内存管理方式 1.C的内存分布 在内存里面是分好几个区的 1. 栈又叫堆栈--非静态局部变量/函数参数/返回值等等&#xff0c;栈是向下增长的。 2. 内存映射段是高效的I/O映射方式&#xff0c;用于装载一个共享的动态内存库。用户可使用系统接口 创建共享…

AI换脸之Faceswap技术原理与实践

目录 1.方法介绍 2.相关资料 3.实践记录 ​4.实验结果 1.方法介绍 Faceswap利用深度学习算法和人脸识别技术&#xff0c;可以将一个人的面部表情、眼睛、嘴巴等特征从一张照片或视频中提取出来&#xff0c;并将其与另一个人的面部特征进行匹配。主要应用在图像/视频换脸&am…

数字图像处理实验记录一(图像基本灰度变换)

文章目录 基础知识图像是什么样的&#xff1f;1&#xff0c;空间分辨率&#xff0c;灰度分辨率2&#xff0c;灰度图和彩色图的区别3&#xff0c;什么是灰度直方图&#xff1f; 实验要求1&#xff0c;按照灰度变换曲线对图像进行灰度变换2&#xff0c;读入一幅图像&#xff0c;分…

树莓派玩转openwrt软路由:5.OpenWrt防火墙配置及SSH连接

1、SSH配置 打开System -> Administration&#xff0c;打开SSH Access将Interface配置成unspecified。 如果选中其他的接口表示仅在给定接口上侦听&#xff0c;如果未指定&#xff0c;则在所有接口上侦听。在未指定下&#xff0c;所有的接口均可通过SSH访问认证。 2、防火…

给ChuanhuChatGPT 配上讯飞星火spark大模型V2.0(一)

ChuanhuChatGPT 拥有多端、比较好看的Gradio界面&#xff0c;开发比较完整&#xff1b; 刚好讯飞星火非常大气&#xff0c;免费可以领取大概20w&#xff08;&#xff01;&#xff01;&#xff01;&#xff09;的token&#xff0c;这波必须不亏&#xff0c;整上。 重要参考&am…

MySQL——源码安装教程

MySQL 一、MySQL的安装1、RPM2、二进制3、源码 二、源码安装方式三、安装过程1、上传源码包2、解压当前文件并安装更新依赖3、对MySQL进行编译安装 四、其他步骤 一、MySQL的安装 首先这里我来介绍下MySQL的几种安装方式&#xff1a; 一共三种&#xff0c;RPM安装包、二进制包…