八大排序算法(含时间复杂度、空间复杂度、算法稳定性)

文章目录

  • 八大排序算法(含时间复杂度、空间复杂度、算法稳定性)
    • 1、(直接)插入排序
      • 1.1、算法思想
      • 1.2、排序过程图解
      • 1.3、排序代码
    • 2、希尔排序
    • 3、冒泡排序
      • 3.1、算法思想
      • 3.2、排序过程图解
      • 3.3、排序代码
    • 4、(简单)选择排序
      • 4.1、算法思想
      • 4.2、排序过程图解
      • 4.3、排序代码
    • 5、堆排序
    • 6、快速排序
    • 7、归并排序
    • 8、计数排序
      • 8.1、算法思想
      • 8.2、排序过程图解
      • 8.3、排序代码

img

八大排序算法(含时间复杂度、空间复杂度、算法稳定性)

下列算法默认都是对数组进行升序

1、(直接)插入排序

1.1、算法思想

  • 插入排序是一种简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

    插入排序的具体步骤如下:

    1. 从第一个元素开始,该元素可以认为已经被排序;
    2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
    3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
    4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
    5. 将新元素插入到该位置后;
    6. 重复步骤2~5。

img


1.2、排序过程图解

  • 从第一个元素开始,该元素可以认为已经被排序,取出下一个元素并记录到临时变量tmp中,在已经排序的元素序列中从后向前扫描(end--),如果该元素(已排序)大于新元素,将该元素移到下一位置,如果该元素小于等于新元素,则直接在这个元素的后面把新元素放进来。

    • 这里仅演示部分过程,其他过程自行考虑(和上述过程类似)。

1.3、排序代码

  • end指向当前要插入元素的前一个位置end+1指向当前要插入元素的位置),tmp保存当前要插入的元素,在已经排序的元素序列中从后向前扫描,找到比新元素小的元素的时候(因为有序,这个位置前面的元素比这个元素更小),直接把新元素插入到这个位置的后面。

    //插入排序
    void InsertSort(int *arr, int n) {for (int i = 0; i < n - 1; ++i) {//一趟int end = i;int tmp = arr[end + 1];while (end >= 0) {if (tmp < arr[end]) {arr[end + 1] = arr[end];} else {break;}--end;}arr[end + 1] = tmp;}
    }
    
  • 时间复杂度计算:

    • 最坏时间复杂度:数组元素原本是降序,现要求使其升序。那么每个元素需要移动或者比较的次数为:

      • 第一个元素:0
      • 第二个元素:1
      • 第三个元素:2
      • 第n个元素:n-1

      总次数:0+1+2+3+...+n-1 = n*(n-1)/2

      所以最坏时间复杂度为:O(n^2)

    • 最好时间复杂度:考虑数组原本是升序,那么所有元素需要移动或者比较的总次数为:0+1+1+...+1 = n-1。所以最好时间复杂度为O(n)

    • 平均时间复杂度:O(n^2) ----> 算法不太行

  • 空间复杂度计算:由于没有开辟额外空间来辅助数组排序,故空间复杂度为O(1)

  • 算法稳定性稳定,因为对于值相同的元素,后插入的时候不会插到相同元素的前面(tmp >= arr[end]break,即不插入)。


2、希尔排序

希尔排序详解


3、冒泡排序

3.1、算法思想

  • 冒泡排序是通过对相邻元素的比较和位置交换,使得每次遍历都可以得到剩余元素中的最大值,将其放入有序序列中最终的位置,然后下一趟排序的时候就不用去比较这个已经确定了的元素。在冒泡排序中,会依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就如同水底下的气泡一样逐渐向上冒。

3.2、排序过程图解

  • 每趟排序可以把一个元素”冒“到最终位置上,下一趟排序就可以少排序一个元素。

    • 这里仅演示部分过程,其他过程自行考虑(和上述过程类似)。

3.3、排序代码

  • 指针i控制每趟需要少排序的元素个数(即已经有i个元素已经在最终位置上),指针j用来比较相邻元素的大小,若相邻元素是降序,则交换这两个元素。

  • 这里定义了一个flag,用来标记每趟排序是否有交换,如果有交换,就需要继续下一趟排序,没有交换则说明数组已经有序,那么就不用继续下一趟排序!

    void Swap(int *a, int *b) {int tmp = *a;*a = *b;*b = tmp;
    }//冒泡排序
    void BubbleSort(int *arr, int n) {for (int i = 0; i < n; ++i) {int flag = 0;for (int j = 0; j < n - 1 - i; ++j) {if (arr[j + 1] < arr[j]) {flag = 1;Swap(&arr[j], &arr[j + 1]);}}if (flag == 0) {break;}}
    }
    
  • 时间复杂度计算:

    • 最坏时间复杂度:考虑数组原本是降序,现在要求其升序。那么每个元素需要移动或者比较的次数为:

      • 第一趟排序:n-1
      • 第二趟排序:n-2
      • 第三趟排序:n-3
      • 第n趟排序:1

      总次数:n-1+n-2+n-3+...+1 = n*(n-1)/2

      所以最坏时间复杂度为:O(n^2)

    • 最好时间复杂度:考虑数组原本是升序。那么所有元素需要移动或者比较的次数为:

      若不使用flag:比较次数为n-1+n-2+n-3+...+1 = n*(n-1)/2次。

      使用flag:比较次数为n-1次。

    • 平均时间复杂度:O(n^2) —> 算法不太行

  • 空间复杂度计算:由于没有开辟额外空间来辅助数组排序,故空间复杂度为O(1)

  • 算法稳定性稳定,因为对于值相同的元素,每一趟排序的时候不会交换(arr[j + 1] < arr[j]才交换)。


4、(简单)选择排序

4.1、算法思想

  • 选择排序是一种简单直观的排序算法。它的工作原理如下:(优化后的选择排序–>每次都能确定当前未排序序列的最小元素和最大元素的最终位置)
    1. 在未排序序列中找到最小元素和最大元素,最小元素存放到排序序列的起始位置,最大元素存放到排序序列的末尾位置。
    2. 再从剩余未排序元素中继续寻找最小元素和最大元素,然后最小元素放到前面已排序序列的末尾最大元素放到后面已排序序列的前面
    3. 以此类推,直到所有元素均排序完毕。
  • 这里动画排序是每次选出一个最小值。(我们讲的算法更优哈哈)

4.2、排序过程图解

  • 在未排序序列中找到最小元素和最大元素,最小元素存放到排序序列的起始位置,最大元素存放到排序序列的末尾位置。

  • 再从剩余未排序元素中继续寻找最小元素和最大元素,然后最小元素放到前面已排序序列的末尾最大元素放到后面已排序序列的前面

    • 这里仅演示部分过程,其他过程自行考虑(和上述过程类似)。
  • 以此类推,直到所有元素均排序完毕。


4.3、排序代码

  • 使用minimaxi分别记录当前未排序的最小值下标和最大值下标在未排序的序列中找出最小值和最大值,然后分别交换到当前未排序的起始位置和末尾位置。需要注意的是如果当前未排序的序列中,最大值刚好在未排序序列的起始位置,那么就需要记录好这个最大值与当前未排序的序列中的最小值交换后的位置,不记录的话,那么当前maxi指向的值不一定是最大值!

    //选择排序
    void SelectSort(int *arr, int n) {int mini = 0;int maxi = 0;int start = 0;int end = n - 1;while (start < end) {for (int i = start + 1; i <= end; ++i) {if (arr[i] > arr[maxi]) {maxi = i;}if (arr[i] < arr[mini]) {mini = i;}}Swap(&arr[mini], &arr[start]);//注意此时如果start刚好是最大值的话,就会把最大值换走了,也就是本来最大值在 0 位置,交换后换到其他位置了,所以判断一下if (start == maxi) {maxi = mini;//找到最大值的下标}Swap(&arr[maxi], &arr[end]);//向中间靠拢++start;--end;}
    }
    
  • 时间复杂度计算:对于选择排序排序来说,没有什么最坏时间复杂度和最好时间复杂度,因为不管原数组起始是升序还是降序,元素之间的比较次数都是一样的:

    • 确定了2个元素的最终位置:n-1
    • 确定了4个元素的最终位置:n-1+n-3
    • 确定了6个元素的最终位置:n-1+n-3+n-5
    • 确定了n个元素的最终位置:n+n-3+n-5+...+1 = n*(n+1)/4 <---大约,所以时间复杂度为O(n^2)
  • 空间复杂度计算:由于没有开辟额外空间来辅助数组排序,故空间复杂度为O(1)

  • 算法稳定性不稳定,考虑序列(1,2,2),排序后序列为(1,2,2),我们发现2的相对位置发生了变化,所以是不稳定的排序算法。


5、堆排序

堆排序详解


6、快速排序

快速排序递归方法和非递归方法详解


7、归并排序

快速排序递归方法和非递归方法详解


8、计数排序

8.1、算法思想

  • 计数排序就是使用一个临时数组来记录这个原数组的元素对应这个临时数组下标出现的次数,然后再对这个临时数组0开始往后按下标出现的次数遍历。

  • 优化:对于原数组最小值较大的情况,我们可以使用对这个临时数组进行==重定位==。

    • 重定位:相当于计算机组成原理里面的将逻辑地址转化为物理地址的过程,比如序列110,110,111,120,125,122,115,118,112,118,其实它的范围就是在110~125,区间长度为16,如果我们按照这个序列的最大值来建立数组,那么需要长度为126的数组,但是这个数组的前110个空间都是0,也就是并没有用上,浪费了。但是如果创建一个长度为16的数组,下标为0~15(原数组每个元素减110,这个110是这个原数组的最小值),是不是就可以匹配这个序列的范围了呢?

      那么问题是之后遍历这个临时数组,只能得到0~15的下标,并不是我们要的110~125!其实,在遍历这个临时数组的时候,可以继续使用重定位,把这个0~15的下标重定位到110~125(每个下标都加110,这个110是这个原数组的最小值)!

8.2、排序过程图解

  • 先找到原数组的最大值和最小值,然后就可以确定临时数组的长度,然后初始化这个临时数组(全0)。

  • 然后依次遍历原数组,根据重定位,将原数组的元素减去最小值去对应临时数组的下标,并对这个下标里的元素+1

  • 遍历这个临时数组,对每个下标进行遍历,按下标对应的元素值看需要对此下标遍历几次(需要重定位回去—加上原数组的最小值)。


8.3、排序代码

  • minmax记录原数组的最小值和最大值,确定临时数组的长度(max-min+1),然后对临时数组count进行初始化,接下来就是把原数组里的元素重定位为临时数组的下标(元素值减原数组的最小值),并对此下标对应的元素+1,一直到遍历完原数组。

  • 遍历这个临时数组count,对每个下标进行遍历,按下标对应的元素值看需要对此下标遍历几次(需要重定位回去—加上原数组的最小值)。

  • 注意:这里不能找最大最小值的下标,因为在重定位回去的时候arr[j++]在变,也就是最小值下标不一定对应到最小值了!

    //计数排序
    void CountSort(int *arr, int n) {//先找出数组的最大最小值int max = arr[0];int min = arr[0];for (int i = 1; i < n; ++i) {if (arr[i] > max) {max = arr[i];}if (arr[i] < min) {min = arr[i];}}//节省空间,需要对元素重定位int capacity = max - min + 1;//元素大小区间//记录每个元素的出现次数int *count = (int *) malloc(sizeof(int) * capacity);if (count == NULL) {perror("malloc error");exit(-1);}memset(count, 0, sizeof(int) * capacity);for (int i = 0; i < n; ++i) {count[arr[i] - min]++;}int j = 0;for (int i = 0; i < capacity; ++i) {while (count[i]--) {arr[j++] = i + min;}}free(count);
    }
    
  • 时间复杂度计算:这里找最大值最小值花费时间n,遍历临时数组花费时间k(临时数组长度),所以时间复杂度为O(n+k)

  • 空间复杂度计算:使用了临时数组(临时数组长度为k),所以空间复杂度为O(k)

  • 算法稳定性稳定,因为它是利用一个数据的索引来记录元素出现的次数,而这个数组的索引就是元素的数值。当计数排序完成后,具有相同数值的元素在数组中的位置也相同,因此它们的顺序保持不变。


八大排序算法整体的时间复杂度、空间复杂度、算法稳定性等看如下表格:

排序算法平均时间复杂度最好情况最坏情况空间复杂度排序方式稳定性
(直接)插入排序O(n^2)O(n)O(n^2)O(1)内部排序稳定
希尔排序O(n^1.3)O(n^1.3)O(n^1.3)O(1)内部排序不稳定
冒泡排序O(n^2)O(n)O(n^2)O(1)内部排序稳定
(简单)选择排序O(n^2)O(n^2)O(n^2)O(1)内部排序不稳定
堆排序O(nlogn)O(nlogn)O(nlogn)O(1)内部排序不稳定
快速排序O(nlogn)O(nlogn)O(n^2)O(logn)内部排序不稳定
归并排序O(nlogn)O(nlogn)O(nlogn)O(n)外部排序稳定
计数排序O(n+k)O(n+k)O(n+k)O(k)外部排序稳定

OKOK,八大排序算法就到这里。如果你对Linux和C++也感兴趣的话,可以看看我的主页哦。下面是我的github主页,里面记录了我的学习代码和leetcode的一些题的题解,有兴趣的可以看看。

Xpccccc的github主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/104258.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springcloud笔记(2)-Eureka服务注册中心

Eureka服务注册 Eureka作为一个微服务的治理中心&#xff0c;它是一个服务应用&#xff0c;可以接收其他服务的注册&#xff0c;也可以发现和治理服务实例。 服务治理中心是微服务&#xff08;分布式&#xff09;架构中最基础和最核心的功能组件&#xff0c;它主要对各个服务…

kafka生产者发送消息报错 Bootstrap broker localhost:9092 (id: -1 rack: null) disconnected

报这个错误是因为kafka里的配置要修改下 在config目录下 server.properties配置文件 这下发送消息就不会一直等待&#xff0c;就可以发送成功了

CTFHub SSRF 题目

文章目录 CTFHub SSRF 通关教程1. 内网访问&#xff0c;伪协议利用1.1 内网访问1.2 伪协议读取文件1.3 端口扫描 2. POST请求&#xff0c;上传文件&#xff0c;FastCGI协议&#xff0c;Redis协议2.1 POST请求2.2 上传文件2.3 FastCGI协议2.4 Redis协议 3. Bypass系列3.1 URL By…

Macos数字音乐库:Elsten Software Bliss for Mac

Elsten Software Bliss for Mac是一款优秀的音乐管理软件&#xff0c;它可以帮助用户自动化整理和标记数字音乐库&#xff0c;同时可以自动识别音乐信息并添加标签和元数据。 此外&#xff0c;Bliss还可以修复音乐库中的问题&#xff0c;例如重复的音乐文件和缺失的专辑封面等…

Apache Dubbo 首个 Node.js 3.0-alpha 版本正式发布

作者&#xff1a;蔡建怿 关于Apache Dubbo3 Apache Dubbo 是一款易用、高性能的 WEB 和 RPC 框架&#xff0c;同时为构建企业级微服务提供服务发现、流量治理、可观测、认证鉴权等能力、工具与最佳实践。经过近几年发展&#xff0c;Dubbo3 已在阿里巴巴集团各条业务线实现全面…

关于如何进行ChatGPT模型微调的新手指南

微调是指在预训练的模型基础上&#xff0c;通过进一步的训练来调整模型以适应特定任务或领域。预训练的模型在大规模的文本数据上进行了广泛的学习&#xff0c;从中获得了一定的知识和语言理解能力。然而&#xff0c;由于预训练并不针对具体任务&#xff0c;因此需要微调来使模…

深耕全面预算管理 拥抱企业数字未来

随着世界数字未来的不断发展&#xff0c;我国也正经历着一场更大范围、更深层次的科技变革。企业面对构建内部生态平衡体系的艰巨任务&#xff0c;对于其信息化部署也提出了更高的要求。增强预算编制的全面性&#xff0c;启动预算管理一体化改革成为了我国企业提高数字化水平的…

实验3:左右循环LED灯

获取流水灯工程&#xff1a; 方式一&#xff1a; keilproteus 完成最小系统&#xff0c;点亮led 灯实验_吴小凹的博客-CSDN博客 方式二&#xff1a; Flowing_led.zip - 蓝奏云直接下载。 原理图修改&#xff1a; 无须修改只需要使用流水灯的工程即可&#xff0c;解压到桌面…

SQL sever中的索引

目录 一、索引定义 二、索引结构 2.1. B-树索引结构&#xff1a; 2.2. 哈希索引结构&#xff1a; 三、索引作用 四、索引与约束区别 五、索引级别 六、索引分类 6.1. 聚集索引&#xff08;Clustered Index&#xff09;&#xff1a; 6.2. 非聚集索引&#xff08;Noncl…

2023年09月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C编程&#xff08;1~8级&#xff09;全部真题・点这里 Python编程&#xff08;1~6级&#xff09;全部真题・点这里 第1题&#xff1a;生日相同 在一个有180人的大班级中&#xff0c;存在两个人生日相同的概率非常大&#xff0c;现给出每个学生的名字&#xff0c;出生月日。试…

redis简介和配置教程

redis简洁版教程 一、概述1、简介2、特点3、优势 二、配置 一、概述 1、简介 Redis是一个高性能的 key-value 数据库。 2、特点 Redis支持数据的持久化&#xff0c;可以将内存中的数据保存在磁盘中&#xff0c;重启的时候可以再次加载进行使用。Redis不仅仅支持简单的key-v…

基于nodejs+vue校园失物招领平台设计与实现

科学技术日新月异的如今&#xff0c;计算机在生活各个领域都占有重要的作用&#xff0c;尤其在信息管理方面&#xff0c;在这样的大背景下&#xff0c;学习计算机知识不仅仅是为了掌握一种技能&#xff0c;更重要的是能够让它真正地使用到实目 录 摘 要 I ABSTRACT II 目 录 II…

【Pytorch】深度学习之损失函数

文章目录 二分类交叉熵损失函数交叉熵损失函数L1损失函数MSE损失函数平滑L1(Smooth L1)损失函数目标泊松分布的负对数似然损失KL散度MarginRankingLoss多标签边界损失函数二分类损失函数多分类的折页损失三元组损失HingEmbeddingLoss余弦相似度CTC损失函数参考资料 学习目标&am…

[Python小项目] 从桌面壁纸到AI绘画

从桌面壁纸到AI绘画 一、前言 1.1 确认问题 由于生活和工作需要&#xff0c;小编要长时间的使用电脑&#xff0c;小编又懒&#xff0c;一个主题用半年的那种&#xff0c;所以桌面壁纸也是处于常年不更换的状态。即时改变主题也是在微软自带的壁纸中选择&#xff0c;而这些自…

1.安装环境

学习Java的第一步应该从配置环境开始&#xff0c;这篇博文介绍了在哪下载安装包以及如何在windows电脑中配置环境&#xff0c;希望大家看完后可以独立安装 ~ 文章目录 一、下载安装包二、 配置环境 一、下载安装包 安装包可以从官网下载&#xff0c;也可以直接私信我拿取。这里…

三、静态路由实验

拓扑图&#xff1a; 两个路由器分了三个网段出来&#xff0c;首先对两台PC机进行配置 进入R1路由器对两边链路进行ip配置 对AR2进行相同的配置&#xff0c;然后我们查看R1的路由表&#xff0c;里面有一些直连的信息。 三个网段的设备现在可以互通&#xff0c;我们要实现跨网段…

python flask接口字段存在性校验函数(http接口字段校验)(返回提示缺少的字段信息)validate_fields()

文章目录 字段存在性校验示例 字段存在性校验 from flask import Flask, request, jsonifyapp Flask(__name__)def validate_fields(data, fields):missing_fields [field for field in fields if field not in data]if missing_fields:return False, f"缺少以下字段: …

[elasticsearch]使用postman来查询数据

最近需要debug程序&#xff0c;debug的时候需要查找elasticsearch里面的数据是否正确。 第一步建立一个post请求&#xff0c;并按照图下的方式填上ur和参数&#xff1a; 发送post请求&#xff0c;url为&#xff1a; http://ip:port/index_name/_search我这里查询的是title字…

Linux桌面环境(桌面系统)

早期的 Linux 系统都是不带界面的&#xff0c;只能通过命令来管理&#xff0c;比如运行程序、编辑文档、删除文件等。所以&#xff0c;要想熟练使用 Linux&#xff0c;就必须记忆很多命令。 后来随着 Windows 的普及&#xff0c;计算机界面变得越来越漂亮&#xff0c;点点鼠标…

母婴用品会员商城小程序的作用是什么

随着政策放松&#xff0c;母婴行业相比以前迎来了更高的发展空间&#xff0c;由于可以与多个行业连接&#xff0c;因此市场规模也是连年上升&#xff0c;母婴用品是行业重要的分支&#xff0c;近些年从业商家连年增加&#xff0c;但在实际经营中&#xff0c;商家所遇经营痛点也…