Elasticsearch 和 Arduino:一起变得更好!

作者:Enrico Zimuel

使用 Arduino IoT 设备与 Elasticsearch 和 Elastic Cloud 进行通信的简单方法

在 Elastic®,我们不断寻找简化搜索体验的新方法,并开始关注物联网世界。 来自物联网的数据收集可能非常具有挑战性,尤其是当我们拥有数千台设备时。

Elasticsearch® 对于收集、探索、可视化和发现数据非常有用 - 对于来自多个设备的所有数据。 Elastic 的分布式特性使其能够轻松处理来自数百万台设备的请求。

感谢与物联网领域非常受欢迎的品牌 Arduino 的合作,我们测试了一些设备,并开发了一个实验性开源库,可以以非常简单的方式将 Arduino 板连接到 Elasticsearch。

什么是 Arduino?

Arduino 是全球开源硬件和软件领域的领导者,拥有超过 3000 万活跃用户! 该品牌旨在帮助各类创客创建自己的互动项目,随着用户面临新的挑战,该品牌不断成长和适应,并扩展到物联网、可穿戴设备、3D 打印和嵌入式环境。 它还开设了专门的专业业务部门,以支持公司成为各自领域的创新者,采用定制且用户友好的方法,避免供应商锁定,并利用 360° 生态系统,做好从原型设计到大规模生产的准备。

Arduino 专业版

在 Arduino Pro 的高性能技术解决方案中,你会发现低功耗且安全的模块系统,例如 Portenta H7,它可以使用高级语言和 AI 进行编程,同时在其可定制的上执行低延迟操作硬件和最新的 Portenta C33,凭借一系列精简且经济高效的功能,使物联网比以往任何时候都更容易访问。

此外,Arduino Pro 的工业级产品适合整个 Arduino 生态系统,其中包括云服务、无数软件库和社区共享的即用型草图,当然还有满足任何需求的各种组件。 其中包括 MKR WiFi 1010 和 Nano RP2040 板等流行产品 —— 创客运动名副其实的基石。

Elasticsearch 和 Arduino

我们开发了一个研发项目来提供一个在 Arduino 模块上运行的简单 Elasticsearch 客户端库(用 C++ 编写)。 没错:现在你可以直接从 Arduino 板与 Elasticsearch 集群通信!

我们使用 Portenta H7、MKR WiFi 1010 和 NANO RP2040 Connect 测试了该库。 任何具有 Wi-Fi 或以太网连接的 Arduino 板都可以使用该库。

我们使用 Elastic Cloud 作为数据库,从相邻设备收集所有数据并提供平均温度的详细信息。 这是控制工程应用中的典型场景。

想了解更多? 以下是包含所有详细信息的简单教程。

使用案例:监控多个物联网设备的温度

我们为一家需要管理位于意大利的多个物联网设备的公司设计了一个用例。 每个设备将来自传感器的数据(例如温度)发送到 Elastic Cloud。 使用 Elastic Cloud,该公司可以管理任何规模的物联网设备,而无需管理专用基础设施。 此外,该公司还需要根据相邻设备的平均温度来调整每个设备的一些内部参数,范围为 100 公里,这是控制工程应用中的典型场景。

使用 Elasticsearch,我们可以使用过滤、聚合、多重匹配、地理空间、向量搜索 (kNN)、语义搜索和机器学习等搜索功能提供多种反馈。

在此用例中,我们使用平均聚合 (average aggregation) 和地理距离 (geo-distance) 来检索 100 公里之间的所有设备。

使用 Elastic Cloud 中提供的 UI Kibana®,我们可以轻松创建仪表板来监控来自所有设备的数据。 由于我们还有地理数据,因此我们可以在地图中表示这些信息。

这是用不同颜色代表不同温度(蓝色是冷,绿色是热)创建的 heat map。

Elastic Cloud 设置

第一步是拥有 Elastic Cloud 帐户。 如果你没有,可以在此处注册试用(无需信用卡)。 登录后,你可以创建新部署,选择要使用的 Elasticsearch 实例的大小。

创建部署后,你需要检索端点 URL 并生成 Elasticsearch 的 API 密钥。 你可以阅读本指南来获取此信息。 对于高级用例,你还可以创建用于不同设备的 API 密钥组,并更改 API 策略以仅允许使用特定索引。

如果你想有自己的本地部署,请参阅文章 “如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch”。

准备Elasticsearch索引

我们需要创建一个索引来存储来自 Arduino 板的数据。 我们想要存储温度值、使用地理位置(纬度和经度)的设备位置、设备标识符名称和时间戳。

我们可以通过向 Elasticsearch 发出以下 HTTP 请求来创建索引 “temperature”:

PUT /temperature
{"mappings": {"properties": {"temperature": { "type": "float" }, "timestamp":   { "type": "date" }, "location":    { "type": "geo_point" },"device-id":   { "type": "keyword" }}}
}

要发送此 HTTP 请求,你可以使用 Elastic Cloud 中 Kibana 的 Dev Tools。

我们希望存储每次设备发送数据时操作的时间戳。 这可以使用 Elasticsearch 的摄取管道 (ingest pipeline) 功能来完成。 摄取管道是 Elasticsearch 在索引(存储)文档之前执行的操作。 例如,管道可以根据某些计算分配特定文档字段的值。

在我们的例子中,我们只需要存储时间戳,我们就可以创建一个 “set-timestamp” 管道:

PUT _ingest/pipeline/set-timestamp
{"description": "sets the timestamp","processors": [{"set": {"field": "timestamp","value": "{{{_ingest.timestamp}}}"}}]
}

使用这个管道,我们可以将数据发送到 Elasticsearch,如下所示:

POST /temperature/_doc?pipeline=set-timestamp
{"temperature": 21.45,"device-id": "H7-001","location": {"type": "Point","coordinates": [12.4923, 41.8903]}
}

这里的 device-id H7-001 是 Arduino 板的名称,location 是用12.4923(经度)和41.8903(纬度)表示的地理点,这是罗马斗兽场(意大利)的位置。

请注意,我们没有指定时间戳值,因为这是使用 “set-timestamp” 管道(在 URL 中指定为查询字符串)自动生成的。

地理距离查询

要检索 100 公里以内设备的平均温度,我们可以使用以下 Elasticsearch 查询:

GET /temperature/_search
{"query": {"bool": {"must": {"match_all": {}},"filter": {"geo_distance": {"distance": "100km","location": [12.4923, 41.8903]}}}},"aggs": {"avg_temp": { "avg": { "field": "temperature" } }}
}

该查询将返回一个 “avg_temp” 聚合字段,其中包含 100 公里半径内所有设备的平均温度。

Arduino 的 Elasticsearch 客户端的使用

终于到了展示一些 Arduino 代码的时候了! 在这里,我们报告了一个简单的草图,它将温度值发送到 Elastic Cloud,执行地理距离查询获取平均温度,然后等待 30 秒。

此处报告的代码可在 GitHub 存储库 elastic/elasticsearch-arduino 的 examples 文件夹中在线获取。 该草图使用 elasticsearch_config.h 文件,如下所示:

#define WIFI_SECRET_SSID ""
#define WIFI_SECRET_PASS ""
#define ELASTIC_ENDPOINT ""
#define ELASTIC_PORT 443
#define ELASTIC_CLOUD_API_KEY ""
#define DEVICE_GEO_LON 12.4923
#define DEVICE_GEO_LAT 41.8903
#define DEVICE_ID "x"
#define DEVICE_GEO_DISTANCE "50km"

在我们的示例中,我们使用 Wi-Fi 连接将 Arduino 板连接到互联网。

WIFI_SECRET_SSID 和 WIFI_SECRET_PASS 是要使用的 SSID 网络的名称和 Wi-Fi 密码。

ELASTIC_ENDPOINT 是 Elastic Cloud 端点的 URL,ELASTIC_PORT 是 443,因为 Elastic Cloud 使用 TLS (https)。 ELASTIC_CLOUD_API_KEY 是要在 Elastic Cloud 管理界面中生成的 API 密钥。

该文件还包含与 Arduino 设备相关的其他信息。 我们有地理查询的经度 (DEVICE_GEO_LON) 和纬度 (DEVICE_GEO_LAT)、ID (DEVICE_ID) 和距离 (DEVICE_GEO_DISTANCE)。

填写完前面的信息后,我们可以看一下设计,报告如下。

#include <ArduinoJson.h>
#include <WiFi.h>
#include <WiFiSSLClient.h>
#include "ESClient.h" 
#include "elasticsearch_config.h"// WiFi settings
char ssid[] = WIFI_SECRET_SSID;
char pass[] = WIFI_SECRET_PASS;// Elastic settings
char serverAddress[] = ELASTIC_ENDPOINT;
int serverPort = ELASTIC_PORT;WiFiSSLClient wifi;ESClient client = ESClient(wifi, serverAddress, serverPort); 
int status = WL_IDLE_STATUS;void setup() {Serial.begin(9600);Serial.println("Started");while (status != WL_CONNECTED) {Serial.print("Attempting to connect to Network named: ");Serial.println(ssid);// Connect to WPA/WPA2 network:status = WiFi.begin(ssid, pass);}// print the SSID of the network you're attached to:Serial.print("SSID: ");Serial.println(WiFi.SSID());// print your WiFi shield's IP address:IPAddress ip = WiFi.localIP();Serial.print("IP Address: ");Serial.println(ip);client.setElasticCloudApiKey(ELASTIC_CLOUD_API_KEY);
}void loop() {float temperature;// Set the temperature from a sensor (removing the randomness)temperature = random(10,30) + random(0,100)/100.00;// Prepare the JSON with temperature and geopoint for ElasticsearchStaticJsonDocument<200> doc;doc["temperature"] = temperature;doc["device-id"] = DEVICE_ID;doc["location"]["type"] = "Point";doc["location"]["coordinates"][0] = DEVICE_GEO_LON;doc["location"]["coordinates"][1] = DEVICE_GEO_LAT;String temp;serializeJson(doc, temp);Serial.println("Sending to Elasticsearch:");Serial.println(temp);ESResponse indexResult;// Send the temperature to Elastic CloudindexResult = client.index("temperature", temp, "pipeline=set-timestamp");DynamicJsonDocument result(1024);deserializeJson(result, indexResult.body);if (result["result"] == "created") {Serial.println("Created with _id: " + result["_id"].as<String>());} else {Serial.println("Error sending data: " + indexResult.body);}StaticJsonDocument<512> query;query["query"]["bool"]["filter"]["geo_distance"]["distance"] = DEVICE_GEO_DISTANCE;query["query"]["bool"]["filter"]["geo_distance"]["location"][0] = DEVICE_GEO_LON;query["query"]["bool"]["filter"]["geo_distance"]["location"][1] = DEVICE_GEO_LAT;query["aggs"]["avg_temp"]["avg"]["field"] = "temperature";query["size"] = 0;String search;serializeJson(query, search);Serial.println("Geo-location query:");Serial.println(search);ESResponse searchResult;// Send the temperature to Elastic CloudsearchResult = client.search("temperature", search);DynamicJsonDocument avg(512);deserializeJson(avg, searchResult.body);float avgTemp = avg["aggregations"]["avg_temp"]["value"];int numDevices = avg["hits"]["total"]["value"];Serial.println("Average temperature of " + String(numDevices) + " devices in " + DEVICE_GEO_DISTANCE + ": " + String(avgTemp));Serial.println("Wait 30 seconds");delay(30000);
}

此设计需要 Wi-Fi、WiFiSSLClient(用于使用 TLS 进行连接)进行互联网连接、用于连接 Elasticsearch 的 EsClient 以及用于序列化和反序列化 Json 数据结构的 ArduinoJson 库。

在 setup() 函数中,我们启动 Wi-Fi 连接,并使用 client.setElasticCloudApiKey(ELASTIC_CLOUD_API_KEY) 函数调用设置 Elastic Cloud 的 API 密钥。

客户端对象在主区域中初始化,传递 Wi-Fi 对象、服务器地址(端点)和 HTTP 端口。

在 loop() 函数中,我们有将温度发送到 Elastic Cloud 的代码。 这里的温度只是一个 10 到 30 之间的随机浮点数; 通常它来自连接到 Arduino 板的传感器。

为了准备发送到 Elasticsearch 的文档,我们使用了 ArduinoJson 库。

我们使用以下代码创建一个 “doc” 对象:

StaticJsonDocument<200> doc;
doc["temperature"] = temperature;
doc["device-id"] = DEVICE_ID;
doc["location"]["type"] = "Point";
doc["location"]["coordinates"][0] = DEVICE_GEO_LON;
doc["location"]["coordinates"][1] = DEVICE_GEO_LAT;

该对象被序列化为 JSON 字符串,如下所示:

String temp;
serializeJson(doc, temp);

最后,可以使用索引 API 将存储在 “temp” 变量中的文档发送到 Elasticsearch,如下所示:

ESResponse indexResult;
indexResult = client.index("temperature", temp, "pipeline=set-timestamp");

此 API 使用 “set-timestamp” 管道在索引 “temp” 中添加 “temp” 文档。 结果存储在 “indexResult” 变量中,该变量是一个结构类型,如下所示:

struct ESResponse {int statusCode;String body;
};

“statusCode” 是响应的 HTTP 状态代码,“body” 是响应正文。 如果响应包含值为 “created” 的 “result” 字段,则索引操作成功。

为了获取半径 100 公里内设备的平均温度,我们使用了以下地理距离查询,使用 ArduinoJson 表示。

StaticJsonDocument<512> query;
query["query"]["bool"]["filter"]["geo_distance"]["distance"] = DEVICE_GEO_DISTANCE;
query["query"]["bool"]["filter"]["geo_distance"]["location"][0] = DEVICE_GEO_LON;
query["query"]["bool"]["filter"]["geo_distance"]["location"][1] = DEVICE_GEO_LAT;
query["aggs"]["avg_temp"]["avg"]["field"] = "temperature";
query["size"] = 0;String search;
serializeJson(query, search);ESResponse searchResult;
searchResult = client.search("temperature", search);DynamicJsonDocument avg(512);
deserializeJson(avg, searchResult.body);
float avgTemp = avg["aggregations"]["avg_temp"]["value"];
int numDevices = avg["hits"]["total"]["value"];

搜索的响应包含平均温度作为聚合值。 此外,我们可以使用 Elasticsearch 的 JSON 响应中的 ['hits']['total']['value'] 字段来检索查询检索到的设备数量。

结论

由于与 Arduino 的合作,我们开发了一个非常简单的库,允许直接从 Arduino 板使用 Elasticsearch。 只需几行代码,我们就可以将数据发送到 Elasticsearch 并使用地理定位等执行复杂的阐述。

我们迫不及待地想看看 Arduino 用户将使用 Elasticsearch 设计出哪些其他创意用例。 例如,如果你对生成式人工智能感兴趣,你将享受 Elastic 的所有最新功能。

不要再等待了 —— 尝试一下 Elastic Cloud 和 elasticsearch-arduino 库。

致谢

我要感谢 Arduino 的所有员工,是他们使这个研发项目成为可能。 特别感谢 Giampaolo Mancini 在开发 elasticsearch-arduino 库方面的帮助和协作。 此外,我还要感谢 Arduino 的 Andrea Richetta 和 Stefano Implicito 使这次合作成为可能。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/104014.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Unity Shader入门精要》笔记06

基础纹理 单张纹理纹理的属性Alpha SourceWrap ModeFilter Mode 凹凸映射高度纹理法线纹理实践在切线空间下计算在世界空间下计算 Unity中的法线纹理类型Create from Grayscale 渐变纹理遮罩纹理其他遮罩处理 单张纹理 我们通常会使用一张纹理来代替物体的漫反射颜色 Shader …

K8s Kubernetes Namespave Pod Label Deployment Service 实战

本章节将介绍如何在kubernetes集群中部署一个nginx服务&#xff0c;并且能够对其进行访问。 Namespace Namespace是kubernetes系统中的一种非常重要资源&#xff0c;它的主要作用是用来实现多套环境的资源隔离或者多租户的资源隔离。 默认情况下&#xff0c;kubernetes集群中…

MySQL之双主双从读写分离

一个主机 Master1 用于处理所有写请求&#xff0c;它的从机 Slave1 和另一台主机 Master2 还有它的从 机 Slave2 负责所有读请求。当 Master1 主机宕机后&#xff0c; Master2 主机负责写请求&#xff0c; Master1 、 Master2 互为备机。架构图如下 : 准备 我们…

升级教育技术软件的多合一解决方案

当今时代技术和教育联系越来越紧密&#xff0c;教育机构对强大、安全、灵活的 IT 解决方案的探索至关重要。 全球事件、技术进步以及学生和教职员工不断变化的需求影响着不断变化的教育格局&#xff0c;我们要采取变革性的方法来确保教育的连续性和质量提升。 Splashtop Ente…

力扣刷题 day43:10-13

1.完全平方数 给你一个整数 n &#xff0c;返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数&#xff0c;其值等于另一个整数的平方&#xff1b;换句话说&#xff0c;其值等于一个整数自乘的积。例如&#xff0c;1、4、9 和 16 都是完全平方数&#xff0c;而 3 …

20基于MATLAB的车牌识别算法,在环境较差的情景下,夜间识别度很差的车牌号码可以精确识别出具体结果,程序已调通,可直接替换自己的数据跑。

基于MATLAB的车牌识别算法&#xff0c;在环境较差的情景下&#xff0c;夜间识别度很差的车牌号码可以精确识别出具体结果&#xff0c;程序已调通&#xff0c;可直接替换自己的数据跑。 20matlab车牌识别 (xiaohongshu.com)

【融合ChatGPT等AI模型】Python-GEE遥感云大数据分析、管理与可视化及多领域案例实践应用

目录 第一章 理论基础 第二章 开发环境搭建 第三章 遥感大数据处理基础与ChatGPT等AI模型交互 第四章 典型案例操作实践 第五章 输入输出及数据资产高效管理 第六章 云端数据论文出版级可视化 更多应用 随着航空、航天、近地空间等多个遥感平台的不断发展&#xff0c;近…

如何在 PyTorch 中冻结模型权重以进行迁移学习:分步教程

一、说明 迁移学习是一种机器学习技术&#xff0c;其中预先训练的模型适用于新的但类似的问题。迁移学习的关键步骤之一是能够冻结预训练模型的层&#xff0c;以便在训练期间仅更新网络的某些部分。当您想要保留预训练模型已经学习的特征时&#xff0c;冻结至关重要。在本教程中…

4年软件测试,突破不了20K,太卷了。。。

先说一个插曲&#xff1a;上个月我有同学在深圳被裁员了&#xff0c;和我一样都是软件测试&#xff0c;不过他是平安外包&#xff0c;所以整个组都撤了&#xff0c;他工资和我差不多都是14K。 现在IT互联网已经比较寒冬&#xff0c;特别是软件测试&#xff0c;裁员先裁测试&am…

【Monorepo实战】pnpm+turbo+vitepress构建公共组件库文档系统

Monorepo架构可以把多个独立的系统放到一起联调&#xff0c;本文记录基于pnpm > workspace功能&#xff0c;如何构建将vitepress和组件库进行联调&#xff0c;并且使用turbo进行任务顺序编排。 技术栈清单&#xff1a; pnpm 、vitepress 、turbo 一、需求分析 1、最终目标…

Node.js 新特性 SEA/单文件可执行应用尝鲜

#1 关于 SEA 单文件可执行应用&#xff08;SEA&#xff0c;Singe Executable Applications&#xff09;&#xff0c;是 Node.js 新版本的特性&#xff0c;最初在 v19.7.0、v18.16.0 加入&#xff0c;并在 v20.x 得到扩展。而上个月发布的全家桶 Bun.js&#xff0c;就自带了 SEA…

正点原子嵌入式linux驱动开发——Busybox根文件系统构建

前面已经移植了TF-A、Uboot和Linux kernel&#xff0c;就剩最后一个 rootfs(根文件系统)了&#xff0c;本章就来学习一下根文件系统的组成以及如何构建根文件系统。这是Linux系统移植的最后一步&#xff0c;根文件系统构建好以后就意味着拥有了一个完整的、可以运行的最小系统 …

大数据Doris(十):添加BE步骤

文章目录 添加BE步骤 一、使用mysql连接 二、​​​​​​​添加be

PySpark 概述

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名--章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…

十六、 代码校验(3)

本章概要 测试驱动开发 测试驱动 vs 测试优先 日志 日志信息日志等级 测试驱动开发 之所以可以有测试驱动开发&#xff08;TDD&#xff09;这种开发方式&#xff0c;是因为如果你在设计和编写代码时考虑到了测试&#xff0c;那么你不仅可以写出可测试性更好的代码&#xff…

分享一下开发回收废品小程序的步骤

随着人们环保意识的不断提高&#xff0c;回收利用已成为日常生活中不可或缺的一部分。回收小程序作为一种便捷、高效的回收方式&#xff0c;越来越受到人们的关注和喜爱。本文将探讨回收小程序的意义和作用&#xff0c;设计理念、功能特点、使用流程以及推广策略&#xff0c;并…

【奇葩问题】微信小程序 We分析 访问来源Top10的总比例为什么不止100%

今天有朋友在小程序后台开访问来源数据的时候发现三个渠道来源的比例超过了100% 搜了很多文章最终在官方社区找到了官方回复&#xff1a; 超过100%&#xff0c;是因为可能有用户&#xff0c;在当日通过多个场景&#xff0c;打开过你的小程序 比如用户A&#xff0c;上午通过【…

Navicat For MySQL使用指南

勾选填充零后的效果&#xff0c;就是不够的位数用零来补齐&#xff01;

leetcode oj

150. 逆波兰表达式求值 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a;定义一个名为 Solution 的类&#xff0c;并在其中定义了一个名为 evalRPN 的公共函数。这个函数接受一个由字符串组成的向量 tokens 作为输入&#xff0c;并返回一个整数。 在代码中&#xff0…

sentinel的启动与运行

首先我们github下载sentinel Releases alibaba/Sentinel (github.com) 下载好了后输入命令让它运行即可&#xff0c;使用cmd窗口输入一下命令即可 java -Dserver.port8089 -jar sentinel-dashboard-1.8.6.jar 账号密码默认都是sentinel 启动成功后登录进去效果如下