时间序列分析基础篇

**时间序列分析(time series analysis)是量化投资中的一门基本技术。时间序列是指在一定时间内按时间顺序测量的某个变量的取值序列。**比如变量是股票价格,那么它随时间的变化就是一个时间序列;同样的,如果变量是股票的收益率,则它随时间的变化也是一个时间序列。时间序列分析就是使用统计的手段对这个序列的过去进行分析,以此对该变量的变化特性建模、并对未来进行预测。

时间序列分析试图通过研究过去来预测未来。

一个时间序列可能存在的特征包括以下几种:

  • **趋势:**趋势是时间序列在某一方向上持续运动(比如牛市时股市每天都在上涨,股票收益率持续为正;熊市时股市每天都在下跌,股票收益率持续为负)。趋势经常出现在金融时间序列中,特别是大宗商品价格;许多商品交易顾问(CTA)基金在他们的交易算法中都使用了复杂的趋势识别模型。

  • **季节变化:**许多时间序列中包含季节变化。在金融领域,我们经常看到商品价格的季节性变化,特别是那些与生长季节或温度变化有关的商品,比如天然气。

  • **序列相关性:金融时间序列的一个最重要特征是序列相关性(serial correlation),又称为自相关性(autocorrelation)。**以投资品的收益率序列为例,我们会经常观察到一段时间内的收益率之间存在正相关或者负相关。此外,波动聚类(volatility clustering)也是一种序列相关性,它意味着高波动的阶段往往伴随着高波动的阶段出现、低波动的阶段往往伴随着低波动的阶段出现,这在量化投资中尤为重要。比如下图为 2001 年到 2017 年上证指数日收益率的标准差,从中可以清晰的看到波动聚类。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**随机噪声:**它是时间序列中除去趋势、季节变化和自相关性之后的剩余随机扰动。由于时间序列存在不确定性,随机噪声总是夹杂在时间序列中,致使时间序列表现出某种震荡式的无规律运动。

量化投资的交易者的目标是利用统计建模来识别金融时间序列中潜在的趋势、季节变化和序列相关性。

金融时间序列的关系中,最重要的当属**自相关性。**对于金融时间序列,比如投资品的收益率,看似随机的时间序列中往往存在着惊人的自相关。对自相关建模并加以利用能够大幅提高交易信号的准确性。配对交易的均值回复策略就是这么一个例子。均值回复策略利用一对投资品价差序列的负相关性进行投资,产生做多或者做空的交易信号,实现盈利。

金融时间序列分析的核心就是挖掘该时间序列中的自相关性。

协方差和相关系数

协方差是有量纲的,因此它的大小受随机变量本身波动范围的影响

当两个随机变量的波动范围扩大 100 倍后,它们的协方差扩大了 10000 倍。因此,人们希望使用某个和协方差有关,但是又是无量纲的测量来描述两个随机变量的相关性。最简单的做法就是用变量自身的波动对协方差进行标准化。相关系数(correlation 或者 correlation coefficient)便由此得来。

ρ \rho ρ表示 x和 y 的总体相关系数(population correlation),它的定义为:

ρ ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] σ X σ Y = C o v ( X , Y ) σ X σ Y \rho(X,Y)=\frac{E[(X-\mu_{X})(Y-\mu_{Y})]}{\sigma_X\sigma_Y}=\frac{Cov(X,Y)}{\sigma_X\sigma_Y} ρ(X,Y)=σXσYE[(XμX)(YμY)]=σXσYCov(X,Y)

其中 σ X \sigma_X σX σ Y \sigma_Y σY 分别为 X和 Y 的总体标准差(population standard deviation)。通过使用 X 和Y 的标准差对它们的协方差归一化, ρ \rho ρ 的取值范围在 -1 到 +1 之间,即 [-1, +1]:

在这里插入图片描述

时间序列的平稳性

平稳性(stationarity)是时间序列分析的基础。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

自相关性和自相关系数

假设我们有弱平稳的投资品收益率序列 { r t } \{ r_t \} {rt} 。自相关性考察的是 t时刻的收益率 r t r_t rt和距当前任意间隔 k时刻的收益率 r t − k r_{t-k} rtk 之间的线性相依关系( k 的取值是所有 $\geq$0的整数)。由于 r t r_t rt r t − k r_{t-k} rtk 来自同一个时间序列,因此我们将第三节中的相关系数的概念应用到 r t r_t rt r t − k r_{t-k} rtk 上,便推广出自相关系数(autocorrelation)。

相关图在我们对时间序列建模时至关重要

拿来一个收益率序列,只要画出相关图,就可以检测该序列在任何间隔 有无统计上显著的自相关性。

对金融时间序列建模,最重要的就是挖掘出该序列中的不同间隔 的自相关性。相关图可以帮助我们判断模型是否合适 如果模型很好的捕捉了自相关性,那么原始时间序列与模型拟合的时间序列之间的残差应该近似的等于随机噪声。

对于任意不为 0 的间隔,随机噪声的自相关均为 0。

显然,间隔为 0 的自相关系数为 1;

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
在这里插入图片描述

因此,在评价对金融时间序列的建模是否合适时,我们首先找到原始时间序列和它的拟合序列之间的残差序列;然后只要画出这个残差序列的相关图就可以看到它是否含有任何模型未考虑的额外自相关性:

如果残差的相关图和上面这个图相似,则可以认为残差是一个随机噪声,而模型已经很好的捕捉了原始时间序列中的自相关性;

如果残差的相关图体现了额外的自相关性,它们将为我们改进已有的模型提供依据,因为这些额外的自相关说明已有模型没有考虑原始时间序列在某些特定间隔上的自相关。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/103964.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HelloKitty 代码 Python

话不多说直接上代码,绘制速度慢,录屏之后调倍速 import math import turtle as t# 计算长度、角度 t1:画笔对象 r:半径 angle:扇形(圆形)的角度 def myarc(t1, r, angle):arc_length = 2 * math.pi * r * angle

asp.net会议预约管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 会议预约管理系统 是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c#语 言开发 asp.net 会议预约管理系统 二、…

【Java学习之道】日期与时间处理类

引言 在前面的章节中,我们介绍了Java语言的基础知识和核心技能,现在我们将进一步探讨Java中的常用类库和工具。这些工具和类库将帮助我们更高效地进行Java程序开发。在本节中,我们将一起学习日期与时间处理类的使用。 一、为什么需要日期和…

Java从resources文件下载文档,文档没有后缀名

业务场景:因为公司会对excel文档加密,通过svn或者git上传代码也会对文档进行加密,所以这里将文档后缀去了,这样避免文档加密。 实现思路:将文档去掉后缀,放入resources下,获取输入流&#xff0…

深度学习验证码项目

项目代码: GitHub - kerlomz/captcha_trainer: [验证码识别-训练] This project is based on CNN/ResNet/DenseNetGRU/LSTMCTC/CrossEntropy to realize verification code identification. This project is only for training the model. GitHub - Python3WebSpi…

win10搭建gtest测试环境+vs2019

首先是下载gtest,这个我已经放在了博客上方资源绑定处,这个适用于win10vs版本,关于liunx版本的不能用这个。 或者百度网盘链接: 链接:https://pan.baidu.com/s/15m62KAJ29vNe1mrmAcmehA 提取码:vfxz 下…

ATF(TF-A)之UBSAN动态代码分析

安全之安全(security)博客目录导读 目录 一、UBSAN简介 二、TF-A中UBSAN配置选项 一、UBSAN简介 未定义行为消毒器(Undefined Behavior Sanitizer,UBSAN)是Linux内核的未定义行为动态检测器。 详细信息可参考:https://github.com/google/kernel-sanit…

js实现日历 完整版

<template><div id"calendar"><!-- 年份 月份 --><div class"title"><div class"label">活动日历</div><div class"total">当前活动 {{ list.length }} 场</div></div><div…

基于Qt C++的工具箱项目源码,含命令行工具、桌面宠物、文献翻译、文件处理工具、医学图像浏览器、插件市场、设置扩展等工具

一、介绍 1. 基本信息 完整代码下载地址&#xff1a;基于Qt C的工具箱项目源码 TBox是一款基于Qt C的工具箱。用户可以自行选择安装所需的工具&#xff08;以插件的形式&#xff09;&#xff0c;将TBox打造成专属于自己的效率软件。TBox基本界面展示如下&#xff1a; 2. 使用…

小程序首页如何进行装修设置

小程序首页是展示给用户的第一屏&#xff0c;它的装修直接影响到用户对小程序的第一印象。小程序首页的设置在小程序管理员后台->页面设置->首页&#xff0c;下图是小程序首页默认的设置。 下图&#xff0c;是小程序首页的具体表现形式。下面具体解释小程序首页各个设置项…

【PCIE720】基于PCIe总线架构的高性能计算(HPC)硬件加速卡

PCIE720是一款基于PCI Express总线架构的高性能计算&#xff08;HPC&#xff09;硬件加速卡&#xff0c;板卡采用Xilinx的高性能28nm 7系列FPGA作为运算节点&#xff0c;在资源、接口以及时钟的优化&#xff0c;为高性能计算提供卓越的硬件加速性能。板卡一共具有5个FPGA处理节…

树和二叉树 | 一些遇到的小问题

1. TreeNode<T> &a TreeNode<T> &a是一个引用&#xff0c;指向类型为T的TreeNode节点。这个引用可以用来修改或访问该节点的值或属性。 2. *BiTree是什么意思&#xff1a; typedef struct BiTNode{ char data;struct BiTNode* lchild, * rchild; }BiT…

标定板生成网址,可以直接打印,matlab标定工具箱

Camera Calibration Pattern Generator – calib.io matlab 打开标定的成像 cameraCalibrator 点击完成之后 命令行中输入 cameraParams.IntrinsicMatrix

修改ubuntu服务器fs文件最大打开数

起因 在对项目进行压测的时候&#xff0c;请求异常 java.net.SocketException: socket closed&#xff0c;查看nginx代理服务器的日志。tail -f -n500 /var/log/nginx/error.log 显示 文件打开数太多socket() failed (24: Too many open files) while connecting to upstream …

Kubernetes核心组件Services

1. Kubernetes Service概念 Service是kubernetes最核心的概念&#xff0c;通过创建Service&#xff0c;可以为一组具有相同功能的POD&#xff08;容器&#xff09;应用提供统一的访问入口&#xff0c;并且将请求进行负载分发到后端的各个容器应用上。 在Kubernetes中&#xf…

C++ opencv实现letterbox

代码&#xff1a; #include <iostream> #include "string" #include "opencv2/opencv.hpp"cv::Mat preprocess_img(cv::Mat& img, int input_w,int input_h) {int w,h,x,y;float r_winput_w/(img.cols*1.0);float r_hinput_h/(img.rows*1.0);if…

凉鞋的 Godot 笔记 108. 第二个通识:增删改查

在这一篇&#xff0c;我们来学习此教程的第二个通识&#xff0c;即&#xff1a;增删改查。 增删改查我们不只是一次接触到了。 在最先接触的场景窗口中&#xff0c;我们是对 Node 进行增删改查。 在文件系统窗口中&#xff0c;我们是对文件&文件夹进行增删改查&#xff1…

leetCode 583.两个字符串的删除操作 动态规划 + 优化空间复杂度(二维dp、一维dp)

583. 两个字符串的删除操作 - 力扣&#xff08;LeetCode&#xff09; 给定两个单词 word1 和 word2 &#xff0c;返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 示例 1&#xff1a; 输入: word1 "sea", word2 &qu…

基于springboot实现校园闲置物品交易平台系统项目【项目源码+论文说明】

基于springboot实现校园闲置物品交易平台系统演示 摘要 社会的发展和科学技术的进步&#xff0c;互联网技术越来越受欢迎。网络计算机的交易方式逐渐受到广大人民群众的喜爱&#xff0c;也逐渐进入了每个用户的使用。互联网具有便利性&#xff0c;速度快&#xff0c;效率高&am…

nodejs+vue+elementui酒店客房服务系统mysql带商家

视图层其实质就是vue页面&#xff0c;通过编写vue页面从而展示在浏览器中&#xff0c;编写完成的vue页面要能够和控制器类进行交互&#xff0c;从而使得用户在点击网页进行操作时能够正常。 简单的说 Node.js 就是运行在服务端的 JavaScript。 前端技术&#xff1a;nodejsvueel…