一. 常见算法模板
1. 基础代码,具体释义后序有空补充
头文件
# ifndef __GRAPH__H__
# define __GRAPH__H__ # include <algorithm>
# include <climits>
# include <cmath>
# include <cstddef>
# include <cstdlib>
# include <ctime>
# include <iostream>
# include <list>
# include <map>
# include <memory>
# include <queue>
# include <random>
# include <set>
# include <stack>
# include <string>
# include <type_traits>
# include <unordered_map>
# include <unordered_set>
# include <utility>
# include <vector> struct Edge ; struct Node { int _val; int _in; int _out; std:: vector< Node * > _next; std:: vector< Edge * > _edges; Node ( int val) : _val ( val) { _in = 0 ; _out = 0 ; }
} ; struct Edge {
public : int _weight; Node _from; Node _to; public : Edge ( int weight, Node from, Node to) : _weight ( weight) , _from ( from) , _to ( to) { }
} ; class MySets {
public : std:: unordered_map< Node * , std:: list< Node * >> _setMap; MySets ( std:: list< Node * > nodes) { for ( auto node : nodes) { std:: list< Node * > myset; myset. push_back ( node) ; _setMap. insert ( make_pair ( node, myset) ) ; } } bool isSameSet ( Node * from, Node * to) ; void unionSet ( Node * from, Node * to) ;
} ; class Graph {
public : std:: map< int , Node * > _nodes; std:: set< Edge * > _edges; std:: list< Node * > _unionNodes; public : Graph ( ) { } ~ Graph ( ) { } void bfs ( Node * node) ; void dfs ( Node * node) ; void showMap ( ) ; std:: list< Node * > sortedToPology ( Graph * graph) ; std:: set< Edge * > kruskalMST ( Graph * graph) ; std:: set< Edge * > primMST ( Graph * graph) ; std:: unordered_map< Node * , int > dijkstral ( Node * head) ; private : Node * getMinDistanceAndUnselectNode ( std:: unordered_map< Node * , int > distanceMap, std:: set< Node * > selectNodes) ;
} ; # endif
源文件
# include "Graph.h"
# include <queue>
# include <unordered_map> Graph * createGraph ( int ( * arr) [ 3 ] , int rawSize, int colSize) { if ( arr == nullptr ) { return nullptr ; } Graph * graph = new Graph; for ( int i = 0 ; i < rawSize; ++ i) { int weight = arr[ i] [ 0 ] ; int from = arr[ i] [ 1 ] ; int to = arr[ i] [ 2 ] ; if ( ! ( graph-> _nodes. find ( from) != graph-> _nodes. end ( ) ) ) { graph-> _nodes. insert ( std:: make_pair ( from, new Node ( from) ) ) ; } if ( ! ( graph-> _nodes. find ( to) != graph-> _nodes. end ( ) ) ) { graph-> _nodes. insert ( std:: make_pair ( to, new Node ( to) ) ) ; } auto iter = graph-> _nodes. find ( from) ; Node * fromNode = iter-> second; iter = graph-> _nodes. find ( to) ; Node * toNode = iter-> second; Edge newEdg ( weight, * fromNode, * toNode) ; fromNode-> _next. push_back ( toNode) ; fromNode-> _out++ ; toNode-> _in++ ; fromNode-> _edges. push_back ( & newEdg) ; graph-> _edges. insert ( & newEdg) ; } return graph;
} void Graph :: dfs ( Node * node) { if ( node == nullptr ) { return ; } std:: stack< Node * > myStack; std:: set< Node * > mySet; myStack. push ( node) ; mySet. insert ( node) ; std:: cout << "cur val = " << node-> _val << std:: endl; while ( ! myStack. empty ( ) ) { Node * curNode = myStack. top ( ) ; myStack. pop ( ) ; for ( auto iter : curNode-> _next) { auto it = mySet. find ( iter) ; if ( it == mySet. end ( ) ) { myStack. push ( curNode) ; myStack. push ( iter) ; mySet. insert ( iter) ; std:: cout << "cur val = " << iter-> _val << std:: endl; break ; } } }
} void Graph :: showMap ( ) { for ( auto iter : _nodes) { std:: cout << "val = " << iter. first << " Node.val = " << iter. second-> _val<< std:: endl; }
} void Graph :: bfs ( Node * node) { if ( node == nullptr ) { return ; } std:: queue< Node * > myQueue; std:: set< Node * > mySet; myQueue. push ( node) ; mySet. insert ( node) ; while ( ! myQueue. empty ( ) ) { Node * curNode = myQueue. front ( ) ; myQueue. pop ( ) ; std:: cout << "cur val = " << curNode-> _val << std:: endl; for ( auto cur : curNode-> _next) { auto it = mySet. find ( cur) ; if ( it == mySet. end ( ) ) { myQueue. push ( cur) ; mySet. insert ( cur) ; } } }
} void test ( ) { int arr[ 8 ] [ 3 ] = { { 7 , 1 , 8 } , { 1 , 1 , 2 } , { 3 , 1 , 4 } , { 1 , 8 , 7 } , { 5 , 2 , 7 } , { 4 , 2 , 6 } , { 2 , 4 , 6 } , { 1 , 7 , 6 } } ; Graph * graph = createGraph ( arr, 8 , 3 ) ; graph-> showMap ( ) ; auto iter = graph-> _nodes. find ( 1 ) ; Node * node1 = iter-> second; graph-> dfs ( node1) ;
} bool MySets :: isSameSet ( Node * from, Node * to) { auto iter = _setMap. find ( from) ; std:: list< Node * > fromSet = iter-> second; iter = _setMap. find ( to) ; std:: list< Node * > toSet = iter-> second; return fromSet == toSet;
} void MySets :: unionSet ( Node * from, Node * to) { auto iter = _setMap. find ( from) ; std:: list< Node * > fromSet = iter-> second; iter = _setMap. find ( to) ; std:: list< Node * > toSet = iter-> second; for ( auto node : toSet) { fromSet. push_back ( to) ; _setMap. insert ( std:: make_pair ( node, fromSet) ) ; }
} std:: set< Edge * > Graph :: kruskalMST ( Graph * graph) { std:: set< Edge * > result; if ( graph == nullptr ) { return result; } MySets myset ( graph-> _unionNodes) ; std:: priority_queue< Edge * > myPriortQueue; for ( auto edge : graph-> _edges) { myPriortQueue. push ( edge) ; } while ( ! myPriortQueue. empty ( ) ) { Edge * edge = myPriortQueue. top ( ) ; myPriortQueue. pop ( ) ; if ( ! myset. isSameSet ( & edge-> _from, & edge-> _to) ) { result. insert ( edge) ; myset. unionSet ( & edge-> _from, & edge-> _to) ; } } return result;
} std:: set< Edge * > Graph :: primMST ( Graph * graph) { std:: set< Edge * > myresult; std:: priority_queue< Edge * > mypriorityQueue; std:: unordered_set< Node * > myset; for ( auto node : graph-> _nodes) { if ( myset. find ( node. second) != myset. end ( ) ) { myset. insert ( node. second) ; for ( auto edge : node. second-> _edges) { mypriorityQueue. push ( edge) ; } while ( ! mypriorityQueue. empty ( ) ) { auto edge1 = mypriorityQueue. top ( ) ; mypriorityQueue. pop ( ) ; auto node1 = & edge1-> _to; if ( myset. find ( node1) != myset. end ( ) ) { myset. insert ( node1) ; myresult. insert ( edge1) ; for ( auto nextEdge : node1-> _edges) { mypriorityQueue. push ( nextEdge) ; } } } } } return myresult;
} Node * Graph :: getMinDistanceAndUnselectNode ( std:: unordered_map< Node * , int > distanceMap, std:: set< Node * > selectNodes) { Node * result = nullptr ; int minDistance = INT_MAX; for ( auto entry : distanceMap) { int distance = entry. second; Node * node1 = entry. first; if ( ( selectNodes. find ( node1) != selectNodes. end ( ) ) && distance < minDistance) { result = node1; minDistance = distance; } } return result;
} std:: unordered_map< Node * , int > Graph :: dijkstral ( Node * head) { std:: unordered_map< Node * , int > distanceMap; if ( head == nullptr ) { return distanceMap; } distanceMap. insert ( std:: make_pair ( head, 0 ) ) ; std:: set< Node * > selectNodes; Node * minhead = getMinDistanceAndUnselectNode ( distanceMap, selectNodes) ; while ( minhead != nullptr ) { int distance = distanceMap. find ( minhead) -> second; for ( auto edges : minhead-> _edges) { Node * toNode = & edges-> _to; if ( distanceMap. find ( toNode) != distanceMap. end ( ) ) { distanceMap. insert ( std:: make_pair ( toNode, distance + edges-> _weight) ) ; } distanceMap. insert ( std:: make_pair ( & edges-> _to, std:: min ( distanceMap. find ( toNode) -> second, distance + edges-> _weight) ) ) ; } selectNodes. insert ( minhead) ; minhead = getMinDistanceAndUnselectNode ( distanceMap, selectNodes) ; } return distanceMap;
}
std:: list< Node * > Graph :: sortedToPology ( Graph * graph) { std:: list< Node * > result; if ( graph == nullptr ) { return result; } std:: unordered_map< Node * , int > inMap; std:: queue< Node * > zeroInQueue; for ( auto node : graph-> _nodes) { inMap. insert ( std:: make_pair ( node. second, node. second-> _in) ) ; if ( node. second-> _in == 0 ) { zeroInQueue. push ( node. second) ; } } while ( ! zeroInQueue. empty ( ) ) { auto node = zeroInQueue. front ( ) ; zeroInQueue. pop ( ) ; result. push_back ( node) ; for ( auto next : node-> _next) { inMap. insert ( std:: make_pair ( next, inMap. find ( next) -> second - 1 ) ) ; if ( inMap. find ( next) -> second == 0 ) { zeroInQueue. push ( next) ; } } } return result;
} int main ( int argc, const char * * argv) { test ( ) ; return 0 ;
}