消息队列 Kafka

Kafka

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域

为什么使用消息队列MQ

在高并发环境下,同步请求来不及处理会发生堵塞,从而触发too many connection错误,引发雪崩效应。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多

我们使用消息队列,通过异步请求,缓解系统压力,消息队列经常应用于异步处理,流量削峰,应用解耦,消息通讯等场景

当前比较常见的 MQ 中间件有 ActiveMQ、RabbitMQ、RocketMQ、Kafka 等
 

使用消息队列的好处

  • 解耦

允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束

  • 可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂了,加入队列的消息仍然可以在系统恢复后被处理

  • 缓冲

有助于控制和优化数据流结果系统的速度,解决生产消息和消费消息的处理速度不一致的情况

  • 灵活性,峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见
如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费
使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃
 

  • 异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它

想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们
 

消息队列的两种模式

  • 点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息
消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息

消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费

  • 发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)

消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息和点对点方式不同,发布到 topic 的消息会被所有订阅者消费


发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目对标象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新

Kafka 概述

基于 Zookeeper

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replicar 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写

Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目
 

Kafka 特性

  • 高吞吐量、低延迟

Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

  • 可扩展性

kafka 集群支持热扩展

  • 持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

  • 容错性

允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)

  • 高并发

支持数千个客户端同时读写

Kafka 系统架构

  • Broker     服务器

一台 kafka 服务器就是一个 broker
一个集群由多个 broker 组成,一个 broker 可以容纳多个 topic

  • Topic   主题

可以理解为一个队列,生产者和消费者面向的都是一个 topic
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储

  • Partition  分区

为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上
一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列
Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序

每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区
然后将消息追加到指定的分区的队列末尾

分区的原因

  • 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了
  • 可以提高并发,因为可以以Partition为单位读写了

基础架构

1、Replica

副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失
且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本
一个 leader 和若干个 follower

2、Leader

每个 partition 有多个副本,其中有且仅有一个作为 Leader
Leader 是当前负责数据的读写的 partition

3、Follower

Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower
Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR
(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower

4、producer

生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition

5、Consumer

消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据

6、Consumer Group(CG)

消费者组,由多个 consumer 组成
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者
可为每个消费者指定组名,若不指定组名则属于默认的组

将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,
防止数据被重复读取,消费者组之间互不影响

7、offset 偏移量

可以唯一的标识一条消息
偏移量决定读取数据的位置,不会有线程安全的问题
消费者通过偏移量来决定下次读取的消息(即消费位置)
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制
消息最终是会还被删除的,默认生命周期为 1 周(7*24小时)

8、Zookeeper

Kafka 通过 Zookeeper 来存储集群的 meta 信息

由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,
需要从故障前的位置继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,
以便故障恢复后继续消费

部署 Kafka 集群

安装 Kafka

//官方下载地址:http://kafka.apache.org/downloads.html
cd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz//安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}vim server.properties

修改 Kafka 配置文件

broker.id=0    
#21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 
broker.id=1、broker.id=2listeners=PLAINTEXT://192.168.10.17:9092    
#31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1    #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量log.retention.hours=168    
#103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除log.segment.bytes=1073741824    
#110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件zookeeper.connect=192.168.54.10:2181,192.168.154.20:2181,192.168.154.30:2181    
#123行,配置连接Zookeeper集群地址

修改环境变量 

//修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/binsource /etc/profile

配置 Zookeeper 启动脚本

//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka//分别启动 Kafka
service kafka start

Kafka 命令行操作

创建topic

查看当前服务器中的所有 topic

kafka-topics.sh --list --zookeeper
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181

查看某个 topic 详情

kafka-topics.sh  --describe --zookeeper 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181

发布消息

kafka-console-producer.sh --broker-list
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181  --topic test

消费消息

kafka-console-consumer.sh --bootstrap-server 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181
--topic test --from-beginning

--from-beginning:会把主题中以往所有的数据都读取出来

修改分区数

kafka-topics.sh --zookeeper 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181
--alter --topic test --partitions 6

删除 topic

kafka-topics.sh --delete --zookeeper 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181 --topic test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/103377.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法|滑动窗口No.1】leetcode209. 长度最小的子数组

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…

cocos2d-x C++与Lua交互

Cocos版本: 3.10 Lua版本: 5.1.4 环境: window Visual Studio 2013 Lua Lua作为一种脚本语言, 它的运行需要有宿主的存在,通过Lua虚拟栈进行数据交互。 它的底层实现是C语言,C语言封装了很多的API接口&a…

【Qt上位机】打开本地表格文件并获取其中全部数据

前言 其实本文所实现的功能并非博主要实现的全部功能,只是全部功能中的一小部分,这里只是为了记录一下实现方法,防止后续忘记,仅供参考。 文章目录 一、实现效果二、UI设计三、程序设计3.1 选择本地表格文件3.2 获取表格总行列数3…

排序算法-冒泡排序法(BubbleSort)

排序算法-冒泡排序法(BubbleSort) 1、说明 冒泡排序法又称为交换排序法,是从观察水中的气泡变化构思而成的,原理是从第一个元素开始,比较相邻元素的大小,若大小顺序有误,则对调后再进行下一个…

安装Zookeeper

ZooKeeper是一个开源的分布式协调服务,它主要用于解决分布式系统中的一致性、可靠性和协调性等问题。 选择版本 去archive.apache.org/dist/zookeeper/,选择Zookeeper版本,我选择3.4.6 上传服务器 复制地址,通过wget下载 wget…

400电话申请办理:为企业提供高效沟通的必备工具

在当今竞争激烈的商业环境中,企业需要与客户保持紧密联系,提供高效沟通渠道。而400电话作为一种便捷的客服热线,成为越来越多企业的首选。本文将介绍400电话的申请办理过程,帮助企业了解如何获得这一重要的沟通工具。 首先&#…

MySQL常用脚本

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《ELement》。🎯🎯 &#x1…

史上最强,Jmeter性能测试-性能场景设计实例(详全)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、性能测试需求 …

微信小程序支持h5实现webrtc h264 h265低延迟传输渲染

微信小程序自成体系,自身也带了很强的rtc音视频能力,但是他捆绑了他自己的服务,开发也相对受限于他的api。基于以前的了解可以采webview的方式内嵌h5网址来实现自定义的webrtc.但实践起来并不轻松,主要是小程序的严格限制&#xf…

微信页面公众号页面 安全键盘收起后键盘下方页面留白

微信浏览器打开H5页面和公众号页面,输入密码时调起安全键盘,键盘收起后 键盘下方页面留白 解决办法: 1、(简单)只有在调起安全键盘(输入密码)的时候会出现这种情况,将input属性改为n…

Hadoop分布式集群搭建教程

目录 前言环境准备一、创建虚拟机二、虚拟机网络配置三、克隆虚拟机四、Linux系统配置五、Hadoop的部署配置六、Hadoop集群的启动Bug解决参考文章 前言 大数据课程需要搭建Hadoop分布式集群,在这里记录一下搭建过程 环境准备 搭建Haoop分布式集群所需环境&#x…

kafka属性说明

kafka中关于一些字段说明 groupId :标识消费者分组id,如果多个消费者id相同,就表示这几个消费者是一组,当一组多个消费者消费同一个topic时,一组中只会有一个成功消费 代码如下 这时只会有一条消息被消费

轻松搭建个人web站点:OpenWRT教程结合内网穿透技术实现公网远程访问

🔥博客主页: 小羊失眠啦 🔖系列专栏: C语言、Linux 🌥️每日语录:山不让尘,川不辞盈。 ❤️感谢大家点赞👍收藏⭐评论✍️ 前言 uhttpd 是 OpenWrt/LuCI 开发者从零开始编写的 Web …

视频美颜SDK,提升企业视频通话质量与形象

在今天的数字时代,视频通话已经成为企业与客户、员工之间不可或缺的沟通方式。然而,由于网络环境、设备性能等因素的影响,视频通话中的画面质量往往难以达到预期效果。为了提升视频通话的质量与形象,美摄美颜SDK应运而生&#xff…

【C语言】预处理详解

前言 在上一篇博客中,我们了解了代码是如何执行的,简单介绍了编译中预处理步骤,在这篇博客中我们将详细了解预处理。 文章目录 一、预定义符号二、#define定义2.1 定义常量2.2 定义宏2.3 创建代码片段 三、#和##运算符3.1 字符串化操作符#3.2…

python关联分析实践学习笔记

曾经有个沃尔玛超市,它将啤酒与尿布这样两个奇怪的东西放在一起进行销售,并且最终让啤酒与尿布这两个看起来没有关联的东西的销量双双增加。 我们关注的是在这样的场景下,如何找出物品之间的关联规则。接下来就来介绍下如何使用Apriori算法&…

RabbitMQ与springboot整合

1、基本概念 Server:接收客户端的连接,实现AMQP实体服务;Connection:连接,应用程序与Server的网络连接,TCP连接;Channel:信道,消息读写等操作在信道中进行。客户端可以建…

读书笔记-《ON JAVA 中文版》-摘要26[第二十三章 注解]

文章目录 第二十三章 注解1. 基本语法1.1 基本语法1.2 定义注解1.3 元注解 2. 编写注解处理器2.1 编写注解处理器2.2 注解元素2.3 默认值限制 3. 使用javac处理注解4. 基于注解的单元测试5. 本章小结 第二十三章 注解 注解(也被称为元数据)为我们在代码…

【Overload游戏引擎细节分析】从视图投影矩阵提取视锥体及overload对视锥体的封装

overoad代码中包含一段有意思的代码,可以从视图投影矩阵逆推出摄像机的视锥体,本文来分析一下原理 一、平面的方程 视锥体是用平面来表示的,所以先看看平面的数学表达。 平面方程可以由其法线N(A, B, C)和一个点Q(x0,…

让 Visual Studio 用上 ChatGPT

一、简介 Visual chatGPT Studio 是 Visual Studio 的一个免费扩展,它直接在 IDE 中添加了 chatGPT 功能。它允许用户以可以根据菜单功能的方式使用 chatGPT。 二、功能介绍 该扩展提供了一组使用 ChatGPT 命令,可以在编辑器中选择你需要处理的代码或…