分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测;
2.运行环境为Matlab2018b;
3.输入多个特征,分四类预测;
4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;
5.可视化展示分类准确率。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将t随机森林(RF)和AdaBoost算法相结合,通过多输入模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入分类预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/101859.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手写Spring系列【一】IOC的简单实现笔记

前言: 👏作者简介:我是笑霸final,一名热爱技术的在校学生。 📝个人主页:个人主页1 || 笑霸final的主页2 📕系列专栏:项目专栏 📧如果文章知识点有错误的地方,…

大日志(大文件)查看工具

一款很不错的日志查看工具, 优势是能查看很大的日志文档。 无需安装,解压后运行即可; 有注册版,不注册也可以使用。 官方地址: LogViewer - Home page 一个下载地址: 日志查看工具UVviewsoft LogViewer(超大…

电脑如何查看是否支持虚拟化及如何开启虚拟化

什么是虚拟化? Intel Virtualization Technology就是以前众所周知的“Vanderpool”技术(简称VT,中文译为虚拟化技术),这种技术可以让一个CPU工作起来就像多个CPU并行运行,从而使得在一部电脑内同时运行多个操作系统成…

开山之作 | YOLOv1算法超详细解析(包括诞生背景+论文解析+技术原理等)

前言:Hello大家好,我是小哥谈。目标检测是计算机视觉领域的一项重要研究方向,它在许多应用领域中都得到了广泛应用,如人脸识别、物体识别、自动驾驶、视频监控等。在过去,目标检测方法主要采用基于RCNN、Fast R-CNN等深…

Python+Tkinter 图形化界面基础篇:集成数据库

PythonTkinter 图形化界面基础篇:集成数据库 引言为什么选择 SQLite 数据库?集成 SQLite 数据库的步骤示例:创建一个任务管理应用程序步骤1:导入必要的模块步骤2:创建主窗口和数据库连接步骤3:创建数据库表…

高级深入--day30

Scrapy Shell Scrapy终端是一个交互终端,我们可以在未启动spider的情况下尝试及调试代码,也可以用来测试XPath或CSS表达式,查看他们的工作方式,方便我们爬取的网页中提取的数据。 如果安装了 IPython ,Scrapy终端将使用 IPython (替代标准Python终端)。 IPython 终端与其…

从零开始:深入理解Kubernetes架构及安装过程

K8s环境搭建 文章目录 K8s环境搭建集群类型安装方式环境规划克隆三台虚拟机系统环境配置集群搭建初始化集群(仅在master节点)配置环境变量(仅在master节点)工作节点加入集群(knode1节点及knode2节点)安装ca…

1806_emacs_org-mode归档的时候修改归档文件名称

全部学习汇总:GreyZhang/g_org: my learning trip for org-mode (github.com) 前面已经基本了解了org-mode的归档的规则或者方法,但是还有一点跟我现在的工作流有点不相符。我自己的工作流中会每月做一次工作的整理总结,因此归档的文件是按照…

C++ PCL点云局部颜色变换

程序示例精选 C PCL点云局部颜色变换 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《C PCL点云局部颜色变换》编写代码,代码整洁,规则,易读。 学习与应用…

基于SpringBoot的大学城水电管理系统

目录 前言 一、技术栈 二、系统功能介绍 管理员模块的实现 领用设备管理 消耗设备管理 设备申请管理 状态汇报管理 用户模块的实现 设备申请 状态汇报 用户反馈 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛…

深度学习简述

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…

点击劫持:X-Frame-Options 未配置

前言 X-Frame-Options作为HTTP头的一部分,是一种用于保护网站免受点击劫持攻击的安全措施。网站可以通过设置X-Frame-Options或csp报头来控制网站本身是否可以被嵌套到iframe中。 漏洞描述 Clickjacking(点击劫持)是一种安全漏洞&#xff…

Android 项目增加 res配置

main.res.srcDirs "src/main/res_test" build->android->sourceSets

简要归纳UE5 Lumen全局光照原理

一、Jim kajiya老爷子的渲染方程: 求全局光照就是求解渲染方程,我们将两边都有未知数的渲染方程变换成离散形式: 更形象的描述这个离散的渲染方程: 要给每个三角形着色就得先判断光线有没有和它相交,以下是求光线和三…

hive数据表创建

目录 分隔符 分区表 二级分区 分桶表 外部表 分隔符 CREATE TABLE emp( userid bigint, emp_name array<string>, emp_date map<string,date>, other_info struct<deptname:string, gender:string>) ROW FORMAT DELIMITED FIELDS TERMINATED BY \t COL…

【NUMA平衡】浅入介绍NUMA平衡技术及调度方式

在云计算方案设计或项目问题处理的时候&#xff0c;经常会遇到NUMA平衡的问题&#xff0c;进行让人不清楚NUMA到底有何用&#xff0c;如何发挥作用&#xff0c;本文就NUMA技术原理和调度进行简要整理&#xff0c;方便后续需要时候查阅学习。 一.背景 一般的对称多处理器中&am…

【Java学习之道】异常的处理方式

引言 今天我们将聚焦于异常处理&#xff0c;这是每一个Java程序员都应该掌握的核心技能之一。通过学习这些内容&#xff0c;你将能够更好地应对程序中的意外情况&#xff0c;提高程序的健壮性和可靠性。 一、异常的处理方式 在Java中&#xff0c;异常处理主要通过使用try-ca…

竞赛选题 深度学习 大数据 股票预测系统 - python lstm

文章目录 0 前言1 课题意义1.1 股票预测主流方法 2 什么是LSTM2.1 循环神经网络2.1 LSTM诞生 2 如何用LSTM做股票预测2.1 算法构建流程2.2 部分代码 3 实现效果3.1 数据3.2 预测结果项目运行展示开发环境数据获取 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天…

信创办公–基于WPS的EXCEL最佳实践系列 (单元格与行列)

信创办公–基于WPS的EXCEL最佳实践系列 &#xff08;单元格与行列&#xff09; 目录 应用背景操作步骤1、插入和删除行和列2、合并单元格3、调整行高与列宽4、隐藏行与列5、修改单元格对齐和缩进6、更改字体7、使用格式刷8、设置单元格内的文本自动换行9、应用单元格样式10、插…

1312. 序列统计

1312. 序列统计 - AcWing题库 L~R范围可以等同于0~R-L范围 相当于在R-L1个数中选出k个数 令 则变为 相当于在R-Lk个数中选出k个数 需要计算 #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define endl \nusing namespace std;t…