在SSL中进行交叉熵学习的步骤

在半监督学习(Semi-Supervised Learning,SSL)中进行交叉熵学习通常包括以下步骤:

  1. 准备标注数据和未标注数据

首先,你需要准备带有标签的标注数据和没有标签的未标注数据。标注数据通常是在任务中手动标记的,而未标注数据则是未经标记的样本。

  1. 构建模型

接下来,你需要选择一个适当的深度学习模型来用于SSL任务。这可以是卷积神经网络(CNN)、循环神经网络(RNN)或变换器(Transformer)等。

  1. 初始化模型

对模型进行初始化,可以使用预训练的权重(如果可用),或者从随机初始化开始。

  1. 定义损失函数

在SSL中,你通常会使用交叉熵损失函数(Cross-Entropy Loss)作为主要的监督损失函数。交叉熵损失用于度量模型的输出与真实标签之间的差异。此外,根据需要,你还可以定义其他损失函数,如"一致性正则化"损失,用于提高模型的泛化性能。

  1. 训练模型

使用标注数据来训练模型的初始版本。你可以使用标准的随机梯度下降(SGD)或其他优化算法来最小化损失函数。这个阶段的目标是使模型能够在标注数据上取得合理的性能。

  1. 伪标签生成

使用已经训练好的模型来生成未标注数据的伪标签。伪标签是模型对未标注数据的预测结果,可以被视为伪装成真实标签的标签。

  1. 扩展数据集

将伪标签与未标注数据合并,创建一个包含伪标签的扩展数据集。

  1. 重新训练模型

使用扩展数据集(包含标注数据和带有伪标签的未标注数据)重新训练模型。在这个阶段,你可以将交叉熵损失应用于标注数据,同时可以应用其他损失函数,如"一致性正则化"损失,以提高泛化性能。

  1. 优化模型

重复训练和调整模型的过程,直到模型在未标注数据上表现良好。你可以通过监视验证集上的性能来确定何时停止训练。

  1. 评估模型

最后,使用测试数据集来评估训练好的模型的性能。你可以计算模型的准确率、精确度、召回率等指标,以评估其在分类任务中的表现。

这些是SSL中进行交叉熵学习的一般步骤。需要注意的是,SSL可以根据具体任务的要求进行不同的变体和改进,包括使用各种正则化技巧和半监督学习策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/100974.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android系统定制之监听USB键盘来判断是否弹出软键盘

一.项目背景 在设备上弹出软键盘,会将一大部分UI遮挡起来,造成很多图标无法看到和点击,使用起来不方便,因此通过插入usb键盘输入代替软键盘,但是点击输入框默认会弹出软键盘,因此想要插入USB键盘时,默认关闭软键盘,拔出键盘时再弹出,方便用户使用 二.设计思路 2.1…

CPU型号参数和SAS卡参数说明

CPU型号 2*CPU Intel 4214 (2.2G/17M/12C/24T/85W) 解释: CPU:2颗 Intel Xeon Silver 4214 处理器 频率:2.2 GHz 缓存:17 MB 核心数量:12核心 线程数量:24线程 功耗:85W 1*SAS HBA卡SAS3008…

JavaScript进阶 第一天笔记

JavaScript 进阶 - 第1天 学习作用域、变量提升、闭包等语言特征,加深对 JavaScript 的理解,掌握变量赋值、函数声明的简洁语法,降低代码的冗余度。 理解作用域对程序执行的影响能够分析程序执行的作用域范围理解闭包本质,利用闭包…

可拓展的低代码全栈框架

尽管现在越来越多的人开始对低代码开发感兴趣,但已有低代码方案的局限性仍然让大家有所保留。其中最常见的担忧莫过于低代码缺乏灵活性以及容易被厂商锁定。 显然这样的担忧是合理的,因为大家都不希望在实现特定功能的时候才发现低代码平台无法支持&…

OpenGL LUT滤镜算法解析

1. 简介 滤镜:一些图像处理软件针对性地提供了一些对传统滤镜效果的模拟功能,使图像达到一种特殊效果。滤镜通常需要同通道、图层、色阶等联合使用,才能使图像取得最佳艺术效果。在软件界面中也直接以“滤镜”(Filter&#xff09…

实现一个自己的脚手架教程

前言 脚手架并不实现,难的是最佳实践的整理和沉淀。本文不会涉及到最佳实践方面的内容,只是教会你如何实现一个最基础的脚手架,以此作为展示最佳实践的载体。 如何搭建一个脚手架的工程 如何开发和调试一个脚手架 脚手架中如何接收和处理命…

12.2 实现键盘模拟按键

本节将向读者介绍如何使用键盘鼠标操控模拟技术,键盘鼠标操控模拟技术是一种非常实用的技术,可以自动化执行一些重复性的任务,提高工作效率,在Windows系统下,通过使用各种键盘鼠标控制函数实现动态捕捉和模拟特定功能的…

数字孪生和数据分析:数字化时代的力量结合

在当今数字化时代,数据是无处不在的。企业、政府和个人不仅生成了大量数据,还寻求从中获取有价值的信息以进行更好的决策。在这个背景下,数字孪生和数据分析成为了迎合这一需求的两个关键概念。本文带大家一起探讨二者之间相辅相成的关系。 一…

Java反射(三) --- 动态代理

文章目录 一、注意点1.获取Class实例的三种常见方式2.对Class类的理解3.创建Class对应运行时类的对象的通用方法,代码实现。以及这样操作,需要对应的运行时类构造器方面满足的要求 二、静态代理举例代码 三、动态代理举例 提示:以下是本篇文章…

Spring Boot:自定义注解--annotation

目录 自定义注解的定义和作用范围如何创建自定义注解创建注解接口 如何使用自定义注解进行数据验证创建注解处理器控制器中使用注解 如何为字段添加注解 自定义注解的定义和作用范围 自定义注解可以作用在类、方法、属性、参数、异常、字段或其他注解上。 如何创建自定义注解…

Google AdSense 账户开通网站广告位后如何配置付款电汇账号的详细教程!

本篇文章主要讲解:Google AdSense 账户开通网站广告位后如何配置付款电汇账号的详细教程。通过本文章可以快速了解开通账户配置权限的整体流程,很多小白朋友注册完毕后发现根本没有配置账号的入口,这篇文章能够告诉你详细的原有。 日期&#…

知识增强语言模型提示 零样本知识图谱问答10.8+10.11

知识增强语言模型提示 零样本知识图谱问答 摘要介绍相关工作方法零样本QA的LM提示知识增强的LM提示与知识问题相关的知识检索 实验设置数据集大型语言模型基线模型和KAPIN评估指标实现细节 实验结果和分析结论 摘要 大型语言模型(LLM)能够执行 零样本cl…

CAN和CANFD通信介绍

CAN(Controller Area Network,控制器局域网)是一种串行通信技术,专门用于在汽车电子控制单元(ECU)之间实现可靠的数据交换。 CAN协议介绍 电子化 汽车近年来的发展呈现出以电子化为主的特点。电子化的主…

Lab 1: Unix utilities汇总

这个实验主要学习了常用的一些系统调用。 Lab 1: Unix utilities Boot xv6 (easy) git克隆,切换分支,qemu。根据要求进行操作即可。 $ git clone git://g.csail.mit.edu/xv6-labs-2020 $ cd xv6-labs-2020 $ git checkout util $ make qemusleep (ea…

数据中心供配电及能效管理系统的设计要点

摘要:现代的数据中心中都包括大量的计算机,对于这种场所的电力供应,都要求供电系统需要在所有的时间都有效,这就不同于一般建筑的供配电系统,它是一个交叉的系统,涉及到市电供电、防雷接地、防静电、UPS不间…

分类预测 | MATLAB实现KOA-CNN-BiGRU开普勒算法优化卷积双向门控循环单元数据分类预测

分类预测 | MATLAB实现KOA-CNN-BiGRU开普勒算法优化卷积双向门控循环单元数据分类预测 目录 分类预测 | MATLAB实现KOA-CNN-BiGRU开普勒算法优化卷积双向门控循环单元数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现KOA-CNN-BiGRU开普勒算法优化…

Visual Studio 2022新建项目时没有ASP.NET项目

一、Visual Studio 2022新建项目时没有ASP.NET项目 1、打开VS开发工具,选择工具菜单,点击“获取工具和功能” 2、选择“ASP.NET和Web开发”和把其他项目模板(早期版本)勾选上安装即可

ICPC 2019-2020 North-Western Russia Regional Contest

A (codeforces.com) 这题在移动不被挡板挡住以及不超过边界的情况下,每次走的越多那么次数就越少 只要两个每次都走b-a步(已经是不被挡板挡住走的最多了),就不用考虑被挡板挡住的情况,只用单独考虑了,如果…

2023年陕西省安全员B证证考试题库及陕西省安全员B证试题解析

题库来源:安全生产模拟考试一点通公众号小程序 2023年陕西省安全员B证证考试题库及陕西省安全员B证试题解析是安全生产模拟考试一点通结合(安监局)特种作业人员操作证考试大纲和(质检局)特种设备作业人员上岗证考试大…

ArcGIS/GeoScene脚本:基于粒子群优化的支持向量机分类模型

参数输入 输出 栅格 预测为负类的概率 预测为正类的概率 二值化结果 评估结果 ROC曲线