Nosql redis高可用和持久化

Nosql redis高可用和持久化

  • 1、redis高可用
  • 2、redis持久化
    • 2.1redis持久化
    • 2.2Redis 持久化方法
    • 2.3RDB 持久化
      • 2.3.1RDB持久化工作原理
      • 2.3.2触发条件
      • 2.3.3其他自动触发机制
      • 2.3.4执行流程
      • 2.3.5启动时加载
    • 2.4AOF 持久化
      • 2.4.1AOF持久化原理
      • 2.4.2开启AOF
      • 2.4.3执行流程
      • 2.4.4文件重写的流程
      • 2.4.5启动时加载
    • 2.5RDB和AOF的优缺点
      • 2.5.1RDB持久化
      • 2.5.2AOF持久化
  • 3、Redis 性能管理
    • 3.1查看Redis内存使用
    • 3.2内存碎片率
    • 3.3跟踪内存碎片率
    • 3.4内存使用率
    • 3.5内回收key
  • 4、总结

1、redis高可用

redis高可用和持久化是企业中很重要的技术,当出现单点故障时,必须使用高可用来抵抗风险。数据保证安全性必须做持久化,将数据写入到磁盘中。

redis高可用方式

  • 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
  • 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简  单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  • 哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
  • Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

2、redis持久化

2.1redis持久化

持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

2.2Redis 持久化方法

  • RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。
  • AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

2.3RDB 持久化

2.3.1RDB持久化工作原理

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

2.3.2触发条件

RDB持久化的触发分为手动触发和自动触发两种

  • 手动触发

save命令和bgsave命令都可以生成RDB文件。

1、save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
2、bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。
3、bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

  • 自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。

vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes

2.3.3其他自动触发机制

除了save m n 以外,还有一些其他情况会触发bgsave:

  • 在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
  • 执行shutdown命令时,自动执行rdb持久化。

2.3.4执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息
在这里插入图片描述

2.3.5启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

2.4AOF 持久化

2.4.1AOF持久化原理

RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

2.4.2开启AOF

//开启AOF
Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes<br>启动redis<br>/etc/init.d/redis_6379 restart

2.4.3执行流程

由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。
AOF的执行流程包括:

  • 命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
  • 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
  • 文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf
--729--
appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!
关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

#文件重写之所以能够压缩AOF文件,原因在于:
●过期的数据不再写入文件
●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
#文件重写的触发,分为手动触发和自动触发:
●手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
●自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。
只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf
--729--
auto-aof-rewrite-percentage 100    :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF <br><br>关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

2.4.4文件重写的流程

(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程,
并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。

2.4.5启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

2.5RDB和AOF的优缺点

2.5.1RDB持久化

优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持  久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

2.5.2AOF持久化

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。

对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。

3、Redis 性能管理

3.1查看Redis内存使用

info memory

在这里插入图片描述

3.2内存碎片率

操作系统分配的内存值used_ memory_ rss除以Redis使用的内存值used_memory计算得出内存碎片是由操作系统低效的分配/回收物理内存导致的 (不连续的物理内存分配)

3.3跟踪内存碎片率

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:

  • 内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低
  • 内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150号, 其中50号是内存碎片率。需要在redis-cli工具.上输入shutdown save命令,并重启Redis 服务器。
  • 内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少Redis内存占用。

3.4内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

避免内存交换发生的方法:

  • 针对缓存数据大小选择安装Redis 实例
  • 尽可能的使用Hash数据结构存储
  • 设置key的过期时间

3.5内回收key

保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。 配置文件中修改maxmemory- policy属性值:

vim /etc/redis/6379.conf--598--
maxmemory-policy noenviction  //配置文件中修改max-memory-policy属性值
volatile-lru 		:使用LRU算法从已设置过期时间的数据集合中淘汰数据
volatile-ttl 		:从已设置过期时间的数据集合中挑选即将过期的数据淘汰
volatile-random 	:从已设置过期时间的数据集合中随机挑选数据淘汰
allkeys-lru 		:使用LRU算法从所有数据集合中淘汰数据
allkeys-random 	    :从数据集合中任意选择数据淘汰
noenviction 		:禁止淘汰数据

在这里插入图片描述

4、总结

Redis高可用主要包括主从复制和Redis集群两种方式,通过将数据分散到多个节点实现数据的备份和读写分离,提高了系统可用性和性能。选用适合自身业务场景的高可用方案,可以保证Redis数据的可靠性和稳定性。Redis持久化主要包括RDB和AOF两种方式,RDB将Redis数据以快照的形式保存到硬盘上,适用于数据量较大且需要定期备份的场景。AOF将Redis的操作记录写入到文件中,可以实现更加精确的数据恢复。选用适合自身业务场景的持久化方案,可以保证Redis数据的可靠性和稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/100921.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css怎么实现文字描边

有时&#xff0c;我们会遇到UI稿有文字描边的效果&#xff0c;比如下图的效果。 一、给需要描边的文字加一个id选择器 例如&#xff1a; 二、css写法&#xff1a; number,{//这个是实现文字描边的关键&#xff0c;也就是‘空心文字’&#xff0c;这个是定义文字字符的描边的宽…

对比纯软开与嵌入式硬件开发谁更好呢?

对比纯软开与嵌入式硬件开发谁更好呢&#xff1f; 你的纠结和犹豫是理解的&#xff0c;职业选择确实是一个重要的决策。我明白你在嵌入式和软件开发之间犹豫不决的原因。让我给你提供一些建议&#xff0c;帮助你做出更明智的决定。最近很多小伙伴找我&#xff0c;说想要一些嵌入…

1600*A. Maze(DFS)

Problem - 377A - Codeforces 解析&#xff1a; 对于正向思考比较复杂的题目&#xff0c;我们可以反向思考。 由于最后剩余的 “ . ” 必须相连&#xff0c;所以我们将所有 “ . ” 全部换成 “ X ”&#xff0c;然后从其中DFS一个联通的“ X ”反向换成 “ . ”即可。 #incl…

配资炒股优质平台排名:十大排名和评估!

随着互联网的发展&#xff0c;配资炒股平台已经成为了越来越多投资者的选择&#xff0c;但是市场上的配资炒股平台各不相同&#xff0c;投资者如何选择一家优质的平台呢&#xff1f;这时候&#xff0c;配资炒股优质平台排名就显得尤为重要。 配资炒股优质平台排名的作用&#…

HTML5开发实例-3D全景(ThreeJs全景Demo) 详解(图)

前言 在现在市面上很多全景H5的环境下,要实现全景的方式有很多,可以用css3直接构建也可以用基于threeJs的库来实现,还有很多别的制作全景的软件使用 本教学适用于未开发过3D全景的工程狮 如果觉得内容太无聊可以直接跳到最后 下载代码 理论 整个3D全景所用的相关理论就…

将 Ordinals 与比特币智能合约集成:第 3 部分

基于 Ordinals 的 BSV-20 同质化代币 之前&#xff0c;我们展示了如何将比特币智能合约与 Ordinals 集成&#xff0c;Ordinals 可以被视为链上的 NFT。 在本文中&#xff0c;我们将展示如何将它们与同质化代币&#xff08;即 BSV-20 代币&#xff09;集成。 我们仍然以拍卖为例…

dubbo3+zookeeper/nacos+dubbo-admin

工程结构&#xff1a; 版本信息&#xff1a; jdk版本&#xff1a;1.8 springboot-parent版本&#xff1a;2.6.6springboot版本&#xff1a;2.6.6 dubbo-spring-boot-starter版本&#xff1a;3.0.7dubbo版本&#xff1a;3.0.7 dubbo-registry-zookeeper版本&#xff1a;3.0.7c…

SRE实战:如何低成本推进风险治理?稳定性与架构优化的3个策略

一分钟精华速览 SRE 团队每天面临着不可控的各类风险和重复发生的琐事&#xff0c;故障时疲于奔命忙于救火。作为技术管理者&#xff0c;你一直担心这些琐事会像滚雪球一样&#xff0c;越来越多地、无止尽地消耗你的团队&#xff0c;进而思考如何系统性地枚举、掌控这些风险&a…

请求和响应的概述

请求&#xff1a;在浏览器地址栏输入地址&#xff0c;点击回车请求服务器&#xff0c;这个过程就是一个请求过程。 响应&#xff1a;服务器根据浏览器发送的请求&#xff0c;返回数据到浏览器在网页上进行显示&#xff0c;这个过程就称之为响应。 针对Servlet的每次请求&…

软件测试之概念篇(需求,测试用例,BUG描述,产品的生命周期)

目录 1.什么是需求 2.什么是测试用例 3.什么是BUG 4.软件的生命周期 5.测试的生命周期 1.什么是需求 在大多数软件公司&#xff0c;一般会有两部分需求&#xff1a; 用户需求&#xff1a;可以理解为就是甲方提出需求&#xff0c;如果没有甲方&#xff0c;那么就是终端用…

IDEA使用模板创建webapp时,web.xml文件版本过低的一种解决方法

创建完成后的web.xml 文件&#xff0c;版本太低 <!DOCTYPE web-app PUBLIC"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN""http://java.sun.com/dtd/web-app_2_3.dtd" ><web-app><display-name>Archetype Created Web Appl…

Springboot使用sqlcipher4加密sqlite数据库

在有些业务场景&#xff0c;需要使用sqlite数据库&#xff0c;但sqlite数据库生的db文件&#xff0c;是明文的&#xff0c;该文件被别人拿到&#xff0c;就可以看到里面的所有数据&#xff0c;非常不安全&#xff0c;市面上有很多对sqlite数据库文件加密的方式&#xff0c;但都…

【Overload游戏引擎分析】编辑器对象鼠标拾取原理

Overload的场景视图区有拾取鼠标功能&#xff0c;单击拾取物体后会显示在Inspector面板中。本文来分析鼠标拾取这个功能背后的原理。 一、OpenGL的FrameBuffer 实现鼠标拾取常用的方式有两种&#xff1a;渲染id到纹理、光线投射求交。Overload使用的是渲染id到纹理&#xff0c…

ESP32网络开发实例-WebSocket服务器

WebSocket服务器 文章目录 WebSocket服务器1、WebSocket介绍2、应用实例介绍3、软件准备4、硬件准备5、代码实现在本文中,将介绍如何使用 WebSocket 通信协议通过 ESP32 构建 Web 服务器。 例如,我们将向介绍如何构建网页以远程控制 ESP32 输出。 输出状态显示在网页上,并在…

在windows系统上安装pgAdmin4

pgAdmin4是全球最先进的开源数据库PostgreSQL的领先开源管理工具。它旨在满足新手和经验丰富的PostgreSQL用户的需求&#xff0c;提供了强大的图形界面&#xff0c;可简化数据库对象的创建、维护和使用。 pgAdmin4是Python开发的Web应用程序&#xff0c;既可以部署为Web模式通…

CSS图文悬停翻转效果完整源码附注释

实现效果截图 HTML页面源码 <!DOCTYPE html> <html><head><meta http-equiv="content-type

一站式数据可视化与分析平台JVS智能BI强大的数据节点功能

在商业智能&#xff08;BI&#xff09;中&#xff0c;数据集是数据的集合&#xff0c;用于分析和报告。数据节点是数据集中的一个重要组成部分&#xff0c;它代表数据集中的一个特定数据点或数据元素。通过使用数据节点&#xff0c;可以对数据进行过滤、分组和计算&#xff0c;…

「Qt中文教程指南」如何创建基于Qt Widget的应用程序(二)

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写&#xff0c;所有平台无差别运行&#xff0c;更提供了几乎所有开发过程中需要用到的工具。如今&#xff0c;Qt已被运用于超过70个行业、数千家企业&#xff0c;支持数百万设备及应用。 本文描述了如何使用…

RK3568平台开发系列讲解(驱动篇)RK3568 PWM详解

🚀返回专栏总目录 文章目录 一、什么是PWM二、RK3568 PWM2.1、PWM 通道与引脚2.2、PWM 简介2.3、PWM 设备节点沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 PWM 是很常用到功能,我们可以通过 PWM 来控制电机速度,也可以使用 PWM 来控制 LCD 的背光亮度。 一、什…

实验1机器学习之线性回归实验

一、实验目的&#xff1a; &#xff08;1&#xff09;理解一元线性回归和多元线性回归的数学原理&#xff0c;能够利用sklearn中相关库解决现实世界中的各类回归问题&#xff1b; &#xff08;2&#xff09;掌握利用matplotlib对一元线性回归模型进行可视化的方法&#xff0c…