文章目录
- 一、编译流程
- 1. 解读入口文件 packgages/vue/index.ts
- 2. compile函数的运行流程
- 二、AST 解析器
- 1. `ast` 的生成
- 2. 创建`ast`的根节点
- 3. 解析子节点 `parseChildren`(关键)
- 4. 解析模版元素 Element
- 模版元素解析-举例分析
一、编译流程
1. 解读入口文件 packgages/vue/index.ts
首先从Vue对象的入口开始,packgages/vue/index.ts文件中只有compileToFunction函数:
- 依赖注入编译函数至runtimeregisterRuntimeCompiler(compileToFunction)
- runtime 调用编译函数compileToFunction
- 返回包含code的编译结果
- 将code作为参数传入Function 的构造函数将生成函数赋值给render变量。
- 将render函数作为编译结果返回
下面这个简单的模版,
<template><div>Hello World</div>
</template>
经过编译后,code返回的字符串为:
const _Vue = Vue return function render(_ctx, _cache) {with(_ctx) {const {openBlock: _openBlock, createBlock:_createBlock} = _Vue;return (_openBlock(), _createBlock("div", null, "Hello World")) }
}
- 拿到这个代码字符串的结果后,第25行声明了一个render变量,并将生成的代码字符串code 作为参数传入了new Function 构造函数,生成了render函数。可以将上面的code字符串格式化。
- 这里的render显而易见是一个柯里化的函数,返回了一个函数,函数内部通过with来扩展作用域链。
- 最后,入口文件返回了render变量,并顺手缓存了render函数。
- 在第一行,入口文件创建了一个
compileCache
对象,用以缓存compileToFunction
函数生成的render
函数,将template
参数作为缓存的key,并在11行进行if分支做缓存判断,如果该模版之前被缓存过,则不再进行编译,直接返回缓存中的render函数,以此提高性能。
2. compile函数的运行流程
compile函数涉及到compile-dom
和compile-core
两个模块。
compile的运行流程:
baseCompile
命名理由:因为compile-core是编译的核心模块,接收外部的参数来按照规则完成编译,而compile-dom是专门处理浏览器场景下的编译,在这个模块下导出的compile函数是入口文件真正接收的编译函数。而compile-dom中的compile函数相对baseCompile也是一个更高阶的编译器。例如:当Vue在weex或iOS或Android这些Native App中工作时,compile-dom可能会被相关的移动端编译库来取代。baseCompile
函数:
- 从函数声明中看,baseCompile接收template模版以及上层高阶编译器处理过的options编译选项,最终返回一个CodegenResult类型的编译结果。
export interface CodegenResult {code: stringpreamble: stringast: RootNodemap?: RawSourceMap
}
- 看上方源码的第12行,判断template模版是否为字符串,如果是的话,则会对字符串进行解析,否则直接将template作为AST。(我们平时写的vue代码都是以字符串的形式传递进去的。)
- 然后是第16行调用了transform函数,以及传入了指令转换、节点等工具函数,对由模版生成的AST进行转换。
- 最后32行,将转换好的ast传入进generate,生成CodegenResult类型的返回结果。
二、AST 解析器
1. ast
的生成
ast的生成有一个三目运算符的判断,如果传进来的template模版是一个字符串,那么则调用baseParse解析模版字符串,否则直接将template作为ast对象。
baseParse
函数:
export function baseParse(content: string,options: ParserOptions = {}
): RootNode {const context = createParserContext(content, options) // 创建解析的上下文对象const start = getCursor(context) // 生成记录解析过程的游标信息return createRoot( // 生成并返回 root 根节点parseChildren(context, TextModes.DATA, []), // 解析子节点,作为 root 根节点的 children 属性getSelection(context, start))
}
- 首先会创建解析的上下文,根据上下文获取游标信息,由于还未进行解析,所以游标中的
column
、line
、offset
属性对应的都是template
的起始位置。 - 之后就是创建根节点,并返回根节点,至此
ast
树生成,解析完成。
2. 创建ast
的根节点
export function createRoot(children: TemplateChildNode[],loc = locStub
): RootNode {return {type: NodeTypes.ROOT,children,helpers: [],components: [],directives: [],hoists: [],imports: [],cached: 0,temps: 0,codegenNode: undefined,loc}
}
- 该函数返回了一个
RootNode
类型的根节点对象,其中我们传入的children
参数会被作为根节点的children
参数。
3. 解析子节点 parseChildren
(关键)
function parseChildren(context: ParserContext,mode: TextModes,ancestors: ElementNode[]
): TemplateChildNode[] {const parent = last(ancestors) // 获取当前节点的父节点const ns = parent ? parent.ns : Namespaces.HTMLconst nodes: TemplateChildNode[] = [] // 存储解析后的节点// 当标签未闭合时,解析对应节点while (!isEnd(context, mode, ancestors)) {/* 忽略逻辑 */}// 处理空白字符,提高输出效率let removedWhitespace = falseif (mode !== TextModes.RAWTEXT && mode !== TextModes.RCDATA) {/* 忽略逻辑 */}// 移除空白字符,返回解析后的节点数组return removedWhitespace ? nodes.filter(Boolean) : nodes
}
- parseChildren函数接收三个参数,context解析器上下文,mode文本数据类型,ancestors祖先节点数据。
- 函数执行首先会从祖先节点中获取当前节点的父节点,确定命名空间,以及创建一个空数组,用来存储解析后的节点。
- 之后会有一个while循环,判断是否到达了标签的关闭位置,如果不是需要关闭的标签,则在循环体内对源模版字符串进行分类解析。
- 之后会有一段处理空白字符的逻辑,处理完成后返回解析好的nodes数组。
while
循环内的逻辑(函数的核心):
- 在while中会判断文本数据的类型,只有当TextModes为DATA或RCDATA时会继续往下解析。
- 第一种情况就是判断是否需要解析Vue模版语法中的
Mustache
语法,如果当前上下文中没有v-pre
指令来跳过表达式,并且源模版字符串是以我们指定的分隔符开头的,就会进行双大括号的解析。 - 接下来会判断,如果第一个字符是
<
并且第二个字符是!
,会尝试解析注释标签,<!DOCTYPE>
和<!CDATA
这三种情况,对于DOCTYPE
会进行忽略,解析成注释。 - 之后会判断当第二个字符是
/
的情况,</
已经满足了一个闭合标签的条件了,所以会尝试匹配闭合标签。当第三个标签是>
,缺少了标签名字,会报错,并让解析器的进度前进三个字符,跳过</>
。 - 如果是
</
,并且第三个字符是小写英文字符,解析器会解析结束标签。 - 如果源模版字符串的第一个字符是
<
,第二个字符是小写英文字符开头,会调用parseElement函数来解析对应的标签。 - 当这个判断字符串字符的分支条件结束,并且没有解析出任何node节点,则会将node作为文本类型,调用parseText进行解析。
- 最后将生成的节点添加进nodes数组,在函数结束时返回。
- 第一种情况就是判断是否需要解析Vue模版语法中的
while
循环的源码如下:
while (!isEnd(context, mode, ancestors)) {const s = context.sourcelet node: TemplateChildNode | TemplateChildNode[] | undefined = undefinedif (mode === TextModes.DATA || mode === TextModes.RCDATA) {if (!context.inVPre && startsWith(s, context.options.delimiters[0])) {/* 如果标签没有 v-pre 指令,源模板字符串以双大括号 `{{` 开头,按双大括号语法解析 */node = parseInterpolation(context, mode)} else if (mode === TextModes.DATA && s[0] === '<') {// 如果源模板字符串的第以个字符位置是 `!`if (s[1] === '!') {// 如果以 '<!--' 开头,按注释解析if (startsWith(s, '<!--')) {node = parseComment(context)} else if (startsWith(s, '<!DOCTYPE')) {// 如果以 '<!DOCTYPE' 开头,忽略 DOCTYPE,当做伪注释解析node = parseBogusComment(context)} else if (startsWith(s, '<![CDATA[')) {// 如果以 '<![CDATA[' 开头,又在 HTML 环境中,解析 CDATAif (ns !== Namespaces.HTML) {node = parseCDATA(context, ancestors)}}// 如果源模板字符串的第二个字符位置是 '/'} else if (s[1] === '/') {// 如果源模板字符串的第三个字符位置是 '>',那么就是自闭合标签,前进三个字符的扫描位置if (s[2] === '>') {emitError(context, ErrorCodes.MISSING_END_TAG_NAME, 2)advanceBy(context, 3)continue// 如果第三个字符位置是英文字符,解析结束标签} else if (/[a-z]/i.test(s[2])) {parseTag(context, TagType.End, parent)continue} else {// 如果不是上述情况,则当做伪注释解析node = parseBogusComment(context)}// 如果标签的第二个字符是小写英文字符,则当做元素标签解析} else if (/[a-z]/i.test(s[1])) {node = parseElement(context, ancestors)// 如果第二个字符是 '?',当做伪注释解析} else if (s[1] === '?') {node = parseBogusComment(context)} else {// 都不是这些情况,则报出第一个字符不是合法标签字符的错误。emitError(context, ErrorCodes.INVALID_FIRST_CHARACTER_OF_TAG_NAME, 1)}}}// 如果上述的情况解析完毕后,没有创建对应的节点,则当做文本来解析if (!node) {node = parseText(context, mode)}// 如果节点是数组,则遍历添加进 nodes 数组中,否则直接添加if (isArray(node)) {for (let i = 0; i < node.length; i++) {pushNode(nodes, node[i])}} else {pushNode(nodes, node)}
}
4. 解析模版元素 Element
parseElement
精简源码如下:
function parseElement(context: ParserContext,ancestors: ElementNode[]
): ElementNode | undefined {// 解析起始标签const parent = last(ancestors)const element = parseTag(context, TagType.Start, parent)// 如果是自闭合的标签或者是空标签,则直接返回。voidTag例如: `<img>`, `<br>`, `<hr>`if (element.isSelfClosing || context.options.isVoidTag(element.tag)) {return element}// 递归的解析子节点ancestors.push(element)const mode = context.options.getTextMode(element, parent)const children = parseChildren(context, mode, ancestors)ancestors.pop()element.children = children// 解析结束标签if (startsWithEndTagOpen(context.source, element.tag)) {parseTag(context, TagType.End, parent)} else {emitError(context, ErrorCodes.X_MISSING_END_TAG, 0, element.loc.start)if (context.source.length === 0 && element.tag.toLowerCase() === 'script') {const first = children[0]if (first && startsWith(first.loc.source, '<!--')) {emitError(context, ErrorCodes.EOF_IN_SCRIPT_HTML_COMMENT_LIKE_TEXT)}}}// 获取标签位置对象element.loc = getSelection(context, element.loc.start)return element
}
- 首先会获取当前节点的父节点,再调用
parseTag()
函数解析。
parseTag()
函数执行流程:- 匹配标签名
- 解析元素中的attribute属性,存储至props属性
- 检测是否存在v-pre属性,如果存在,则修改context上下文中的inVPre属性为true。
- 检测自闭合标签,如果是自闭合,则将isSelfClosing属性置为true。
- 判断tagType,是Element还是component组件,或slot插槽。
- 返回生成的element对象
- 获取到 element对象后,会判断element是否是自闭合标签,或空标签,例如
<img>
、<br>
、<hr>
,如果是这种情况,直接返回element对象。 - 然后解析element的子节点,把element压入栈中,然后递归调用parseChildren来解析子节点。
const parent = last(ancestors)
在将element入栈后,拿到的父节点就是当前节点。
- 解析完毕后,调用
ancestors.pop()
,让当前解析完子节点的element对象出栈,将解析后的children对象赋值给element的children属性,完成element的子节点解析。 - 最后匹配结束标签,设置element的Ioc位置信息,返回解析完毕的 element 对象。
模版元素解析-举例分析
<div><p>Hello World</p>
</div>