Multi-Grade Deep Learning for Partial Differential Equations

论文阅读:Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation

  • Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation
    • 符号定义
      • 偏微分方程定义
      • FNN定义
      • PINN定义
    • 多级学习
    • 两阶段模型
    • 实验结果
      • 1D Burgers
  • 总结

Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation

符号定义

偏微分方程定义

一个偏微分方程可以定义如下:
F ( u ( t , x ) ) = 0 , x ∈ Ω , t ∈ ( 0 , T ] , I ( u ( 0 , x ) ) = 0 , x ∈ Ω , t = 0 , B ( u ( t , x ) ) = 0 , x ∈ Γ , t ∈ ( 0 , T ] , \begin{aligned}\mathcal{F}(u(t,x))&=0,&x\in\Omega,&t\in(0,T],\\\mathcal{I}(u(0,x))&=0,&x\in\Omega,&t=0,\\\mathcal{B}(u(t,x))&=0,&x\in\Gamma,&t\in(0,T],\end{aligned} F(u(t,x))I(u(0,x))B(u(t,x))=0,=0,=0,xΩ,xΩ,xΓ,t(0,T],t=0,t(0,T],
其中 Ω ⊂ R d \Omega\subset\mathbb{R}^d ΩRd d d d 为计算域的维度, Γ \varGamma Γ Ω \Omega Ω 的边界,$ \mathcal{F}$ 为非线性微分算子, I , B \mathcal{I},\mathcal{B} I,B 分别表示初始条件和边界条件的(非线性)算子, u u u 是要学习的未知解。并且其中 T > 0 T > 0 T>0,初始状态 u ( 0 , x ) u(0, x) u(0,x) u u u Γ \varGamma Γ 上的数据已知。

FNN定义

s , t s,t s,t 为两个正整数。 FNN 是将 s s s 维度的输入向量映射到 t t t 维度的输出向量的函数。深度为 D D D 的 FNN 是由输入层、 D − 1 D − 1 D1 个隐藏层和输出层组成的神经网络。令 d i d_i di 表示第 i i i 个隐藏层中的神经元数量,令 W i ∈ R d i × d i − 1 W_i\in\mathbb{R}^{d_i\times d_{i-1}} WiRdi×di1 b i ∈ R d i b_i \in \mathbb{R}^{d_i} biRdi 分别表示第 i i i 层的权重矩阵和偏置向量。设 σ : R → R \sigma:\mathbb{R}\to\mathbb{R} σ:RR 表示激活函数, x : = [ x 1 , x 2 , … , x s ] T ∈ R s \mathbf{x}:=\left.[x_1,x_2,\ldots,x_s]^T\right.\in\mathbb{R}^s x:=[x1,x2,,xs]TRs 是输入向量。第一个隐藏层的输出表示为 H 1 ( x ) \mathcal{H}_1(\mathbf{x}) H1(x),通过使用 W 1 W_1 W1 b 1 b_1 b1 将激活函数应用于输入的仿射变换来定义。具体来说,我们有
H 1 ( x ) = σ ( W 1 x + b 1 ) , x ∈ R s \mathcal{H}_1(\mathbf{x})=\sigma(W_1\mathbf{x}+b_1),\quad\mathbf{x}\in\mathbb{R}^s H1(x)=σ(W1x+b1),xRs
其中 W 1 ∈ R d 1 × s W_1\in\mathbb{R}^{d_1\times s} W1Rd1×s b 1 ∈ R d 1 b_1 \in \mathbb{R}^{d_1} b1Rd1 。对于深度 D ≥ 3 D \ge 3 D3 的神经网络,第 ( i + 1 ) (i+1) (i+1) 个隐藏层的输出可以被识别为第 i i i 个隐藏层输出的递归函数,定义为
H i + 1 ( x ) : = σ ( W i + 1 H i ( x ) + b i + 1 ) , i = 1 , 2 , … , D − 2 \mathcal{H}_{i+1}(\mathrm{x}):=\sigma(W_{i+1}\mathcal{H}_i(\mathrm{x})+b_{i+1}),\quad i=1,2,\ldots,D-2 Hi+1(x):=σ(Wi+1Hi(x)+bi+1),i=1,2,,D2
最后,深度为 D 的神经网络的输出定义为
N D ( x ) : = W D H D − 1 ( x ) + b D \mathcal{N}_D(\mathbf{x}):=W_D\mathcal{H}_{D-1}(\mathbf{x})+b_D ND(x):=WDHD1(x)+bD
可训练网络参数集表示为 Θ : = { W i , b i } i = 1 D \Theta:=\{W_i,b_i\}_{i=1}^D Θ:={Wi,bi}i=1D,它由所有层的所有权重矩阵和偏差向量组成。

PINN定义

PINN 的损失函数由三个部分组成:PDE 损失、初始条件损失和边界条件损失。假设 N D \mathcal N_D ND 是一个要学习的深度神经网络,PINN的损失函数的三个分量定义如下:

  • PDE 的损失:
    L o s s P D E ( N D ) : = 1 N f ∑ i = 1 N f ∣ F ( N D ( t f i , x f i ) ) ∣ 2 , ( t f i , x f i ) ∈ ( 0 , T ] × Ω , Loss_{PDE}(\mathcal{N}_D):=\frac1{N_f}\sum_{i=1}^{N_f}|\mathcal{F}(\mathcal{N}_D(t_f^i,x_f^i))|^2,\quad(t_f^i,x_f^i)\in(0,T]\times\Omega, LossPDE(ND):=Nf1i=1NfF(ND(tfi,xfi))2,(tfi,xfi)(0,T]×Ω,

    其中, ( t f i , x f i ) (t_f^i,x_f^i) (tfi,xfi) 是从计算域中随机生成的采样点。

  • 初始条件损失:
    L o s s I ( N D ) : = 1 N 0 ∑ i = 1 N 0 ∣ L ( N D ( 0 , x 0 i ) ) ∣ 2 , x 0 i ∈ Ω Loss_I(\mathcal{N}_D):=\frac1{N_0}\sum_{i=1}^{N_0}|\mathcal{L}(\mathcal{N}_D(0,x_0^i))|^2,\quad x_0^i\in\Omega LossI(ND):=N01i=1N0L(ND(0,x0i))2,x0iΩ
    其中, x 0 i x_0^i x0i 是在初始条件上随机生成的采样点。

  • 边界条件损失:
    L o s s B ( N D ) : = 1 N b ∑ i = 1 N b ∣ B ( N D ( t b i , x b i ) ) ∣ 2 , ( t b i , x b i ) ∈ ( 0 , T ] × Γ Loss_B(\mathcal{N}_D):=\frac1{N_b}\sum_{i=1}^{N_b}\left|\mathcal{B}(\mathcal{N}_D(t_b^i,x_b^i))\right|^2,\quad(t_b^i,x_b^i)\in(0,T]\times\Gamma LossB(ND):=Nb1i=1Nb B(ND(tbi,xbi)) 2,(tbi,xbi)(0,T]×Γ
    其中, ( t b i , x b i ) (t_b^i,x_b^i) (tbi,xbi) 是从边界上随机生成的采样点。

于是,总的PINN损失如下:
L o s s ( N D ) : = L o s s P D E ( N D ) + L o s s I ( N D ) + L o s s B ( N D ) . Loss(\mathcal{N}_D):=Loss_{PDE}(\mathcal{N}_D)+Loss_I(\mathcal{N}_D)+Loss_B(\mathcal{N}_D). Loss(ND):=LossPDE(ND)+LossI(ND)+LossB(ND).
PINN 的主要思想是利用神经网络通过最小化损失函数(残差)来学习 PDE 的近似解。令 N D ( ∙ ) : = N D ( Θ ; ∙ ) \mathcal{N}_D(\bullet):= \mathcal{N}_D(\Theta;\bullet) ND():=ND(Θ;) 为具有深度 D D D 和网络参数 Θ \Theta Θ 的神经网络。为了获得PDE的近似解,PINN相对于网络参数 Θ \Theta Θ 最小化上式定义的损失函数,即
min ⁡ Θ L o s s ( N D ( Θ ; ∙ ) ) \min_\Theta Loss(\mathcal{N}_D(\Theta;\bullet)) ΘminLoss(ND(Θ;))

多级学习

可以通过定义一个深度为 k 1 k_1 k1 的神经网络 N k 1 \mathcal N_{k_1} Nk1 开始,其参数为 Θ 1 : = { W i 1 , b i 1 } i = 1 k 1 \Theta_1:=\{W^1_i,b^1_i\}_{i=1}^{k_1} Θ1:={Wi1,bi1}i=1k1。于是可以设置 u 1 = u 1 ( Θ 1 ; ∙ ) : = N k 1 ( Θ 1 ; ∙ ) u_1=u_1(\Theta_1;\bullet):=\mathcal{N}_{k_1}(\Theta_1;\bullet) u1=u1(Θ1;):=Nk1(Θ1;) 为 1 级神经网络。为了学习 1 级参数,可以对如下最小化问题求解:
min ⁡ Θ 1 L o s s ( u 1 ( Θ 1 ; ∙ ) ) \min_{\Theta_1}Loss(u_1(\Theta_1;\bullet)) Θ1minLoss(u1(Θ1;))
对上述最小化问题求解后,就得到了 1 级的近似解,表示为 u 1 ∗ = N k 1 ∗ : = N k 1 ( Θ 1 ∗ ; ∙ ) u_1^*=\mathcal{N}_{k_1}^*:=\mathcal{N}_{k_1}(\Theta_1^*;\bullet) u1=Nk1:=Nk1(Θ1;),其中 Θ 1 ∗ : = { W i 1 ∗ , b i 1 ∗ } i = 1 k 1 \Theta_1^*:=\{W_i^{1*},b_i^{1*}\}_{i=1}^{k_1} Θ1:={Wi1,bi1}i=1k1 是学习到的参数。于是近似解 u 1 u_1 u1 可以表示为:
u 1 ∗ ( x ) = W k 1 1 ∗ H k 1 − 1 1 ∗ ( x ) + b k 1 1 ∗ u_1^*(\mathbf{x})=W_{k_1}^{1*}\mathcal{H}_{k_1-1}^{1*}(\mathbf{x})+b_{k_1}^{1*} u1(x)=Wk11Hk111(x)+bk11
其中 H k 1 − 1 1 ∗ \mathcal{H}_{k_1-1}^{1*} Hk111 是没有输出层的网络 N k 1 1 ∗ \mathcal{N}_{k_1}^{1*} Nk11 W k 1 1 ∗ W_{k_1}^{1*} Wk11 表示连接最后一个隐藏层和输出层的权重矩阵, b k 1 1 ∗ b_{k_1}^{1*} bk11 表示相应的偏差向量。

接下来,就可以构建 2 级神经网络,用 u 2 u_2 u2 表示,它建立在 1 级神经网络之上,使用网络 N k 2 : = N k 2 ( Θ 2 ; ∙ ) \mathcal{N}_{k_2}:=\mathcal{N}_{k_2}(\Theta_2;\bullet) Nk2:=Nk2(Θ2;) ,参数 Θ 2 : = { W j 2 , b j 2 } j = 1 k 2 \Theta_2:=\{W^2_j,b^2_j\}_{j=1}^{k_2} Θ2:={Wj2,bj2}j=1k2。具体来说,就是首先删除 1 级的输出层,并将网络 N k 2 \mathcal{N}_{k_2} Nk2 堆叠在 1 级的最后一个隐藏层之上,以定义 2 级的神经网络。即,
u 2 = u 2 ( Θ 1 ; ∙ ) : = N k 2 ( Θ 2 ; ∙ ) ∘ H k 1 − 1 1 ∗ u_2=u_2(\Theta_1;\bullet):=\mathcal{N}_{k_2}(\Theta_2;\bullet)\circ\mathcal{H}_{k_1-1}^{1*} u2=u2(Θ1;):=Nk2(Θ2;)Hk111
其中“ ∘ \circ ”表示复合算子, H k 1 − 1 1 ∗ \mathcal{H}_{k_1-1}^{1*} Hk111 是没有输出层的网络 N k 1 1 ∗ \mathcal{N}_{k_1}^{1*} Nk11

在这里插入图片描述

2级神经网络的参数可以通过解决如下最小化问题来进行学习:
min ⁡ Θ 2 L o s s ( u 1 ∗ ( ∙ ) + u 2 ( Θ 2 ; ∙ ) ) \min_{\Theta_2}Loss(u_1^*(\bullet)+u_2(\Theta_2;\bullet)) Θ2minLoss(u1()+u2(Θ2;))
得到最优参数 Θ 2 ∗ : = { W j 2 ∗ , b j 2 ∗ } j = 1 k 2 \Theta_2^*:=\{W_j^{2*},b_j^{2*}\}_{j=1}^{k_2} Θ2:={Wj2,bj2}j=1k2 并定义:
u 2 ∗ : = u 2 ( Θ 2 ∗ ; ∙ ) = N k 2 ( Θ 2 ∗ ; ∙ ) ∘ H k 1 − 1 1 ∗ u_2^*:=u_2(\Theta_2^*;\bullet)=\mathcal{N}_{k_2}(\Theta_2^*;\bullet)\circ\mathcal{H}_{k_1-1}^{1*} u2:=u2(Θ2;)=Nk2(Θ2;)Hk111
值得注意的是, H k 1 − 1 1 ∗ \mathcal{H}_{k_1-1}^{1*} Hk111 在训练过程中是固定的,于是从上式中可以看出, u 2 ∗ u_2^* u2 学习了 1 级解 u 1 ∗ u_1^* u1 的残差,以更好地逼近偏微分方程的解。

于是可以通过重复上述过程来构造一个 ℓ + 1 \ell+1 +1 级的神经网络。假设对于 1 ≤ i ≤ ℓ 1 \le i \le \ell 1i,已经学习了 i i i 级的神经网络 u i u_i ui,可以使用参数为 Θ ℓ + 1 : = { W j ℓ + 1 , b j ℓ + 1 } j = 1 k ℓ + 1 \Theta_{\ell+1}:=\{W_j^{\ell+1},b_j^{\ell+1}\}_{j=1}^{k_{\ell+1}} Θ+1:={Wj+1,bj+1}j=1k+1 的神经网络 N k ℓ + 1 ( Θ ℓ + 1 ; ∙ ) \mathcal{N}_{k_{\ell+1}}(\Theta_{\ell+1};\bullet) Nk+1(Θ+1;) 定义 ℓ + 1 \ell+1 +1级神经网络 u ℓ + 1 u_{\ell+1} u+1,即
u ℓ + 1 ( Θ ℓ + 1 ; x ) : = ( N k ℓ + 1 ( Θ ℓ + 1 ; ∙ ) ∘ H k ℓ − 1 ℓ ∗ ∘ ⋯ ∘ H k 2 − 1 2 ∗ ∘ H k 1 − 1 1 ∗ ) ( x ) u_{\ell+1}(\Theta_{\ell+1};\mathbf{x}):=(\mathcal{N}_{k_{\ell+1}}(\Theta_{\ell+1};\bullet)\circ\mathcal{H}_{k_{\ell}-1}^{\ell*}\circ\cdots\circ\mathcal{H}_{k_2-1}^{2*}\circ\mathcal{H}_{k_1-1}^{1*})(\mathbf{x}) u+1(Θ+1;x):=(Nk+1(Θ+1;)Hk1Hk212Hk111)(x)
其中 H k i − 1 i ∗ \mathcal{H}_{k_i-1}^{i*} Hki1i 表示没有输出层的神经网络 N k i ∗ : = N k i ( Θ i ∗ ; ∙ ) \mathcal{N}_{k_i}^*:=\mathcal{N}_{k_i}(\Theta_i^*;\bullet) Nki:=Nki(Θi;),学习参数为 { W j i ∗ , b j i ∗ } j = 1 k i − 1 , i = 1 , 2 , … , ℓ . \{W_j^{\boldsymbol{i}*},b_j^{\boldsymbol{i}*}\}_{j=1}^{\boldsymbol{k}_i-1},i=1,2,\ldots,\ell. {Wji,bji}j=1ki1,i=1,2,,. 通过求解如下最小化问题可以得到 ℓ + 1 \ell+1 +1 级最优参数 Θ ℓ + 1 ∗ = { W j ℓ + 1 ∗ , b j ℓ + 1 ∗ } j = 1 k ℓ + 1 \Theta_{\ell+1}^*=\left.\{W_j^{\ell+1*},b_j^{\ell+1*}\}_{j=1}^{k_{\ell+1}}\right. Θ+1={Wj+1,bj+1}j=1k+1
min ⁡ Θ ℓ + 1 L o s s ( ∑ i = 1 ℓ u i ∗ ( ∙ ) + u ℓ + 1 ( Θ ℓ + 1 ; ∙ ) ) \min_{\Theta_{\ell+1}}Loss\left(\sum_{i=1}^{\ell}u_i^*(\bullet)+u_{\ell+1}(\Theta_{\ell+1};\bullet)\right) Θ+1minLoss(i=1ui()+u+1(Θ+1;))
然后可以令 u ℓ + 1 ∗ : = u ℓ + 1 ( Θ ℓ + 1 ∗ ; ∙ ) u_{\ell+1}^*:=u_{\ell+1}(\Theta_{\ell+1}^*;\bullet) u+1:=u+1(Θ+1;)。最后,通过对所有 ℓ + 1 \ell + 1 +1 个等级的近似值求和,可以得到神经网络
u ˉ ℓ + 1 ∗ : = ∑ i = 1 ℓ + 1 u i ∗ \bar{u}_{\ell+1}^*:=\sum_{i=1}^{\ell+1}u_i^* uˉ+1:=i=1+1ui

两阶段模型

前文中描述的学习策略涉及逐级学习的方法。随着级数的增加,需要学习的残差振荡变得更加明显。然而,由于每个等级的神经网络的层数相对较少(在稍后介绍的实验中通常少于 6 层),网络可能难以捕获底层残差振荡中包含的更复杂的模式。此外,MGDL 模型可能会陷入局部最小化器而错过全局最小化器。解决这些问题需要扩大优化器的搜索区域。为此,作者解冻了先前级和以前的一些训练过的网络的一些层并对它们进行重新训练,以提高生成的 DNN 解决方案的准确性。这个过程被称为训练的第二阶段。

下面描述第二阶段的训练。假设经过第一阶段的训练,已经构建了神经网络 u ˉ L ∗ : = ∑ i = 1 L u i ∗ \bar{u}_L^*:=\sum_{i=1}^Lu_i^* uˉL:=i=1Lui,其具有 L L L 级。其近似解 u L ∗ u^*_L uL 具有如下表达式:
u L ∗ ( x ) : = ( N k L ∗ ∘ H k L − 1 L − 1 ∗ ∘ ⋯ ∘ H k 2 − 1 2 ∗ ∘ H k 1 − 1 1 ∗ ) ( x ) u_L^*(\mathbf{x}):=(\mathcal{N}_{k_L}^*\circ\mathcal{H}_{k_L-1}^{L-1*}\circ\cdots\circ\mathcal{H}_{k_2-1}^{2*}\circ\mathcal{H}_{k_1-1}^{1*})(\mathbf{x}) uL(x):=(NkLHkL1L1Hk212Hk111)(x)
其中 N k L ∗ \mathcal{N}^*_{k_L} NkL L L L 级进行训练,其参数为 Θ L ∗ \Theta^*_L ΘL。可以解冻 u L ∗ u^*_L uL 的最后 k k k 层作为新的可训练层,其中 k > k L k \gt k_L k>kL。可以表示为:
Θ L , k : = { W j L , k , b j L , k } j = 1 k \Theta_{L,k}:=\{W_j^{L,k},b_j^{L,k}\}_{j=1}^k ΘL,k:={WjL,k,bjL,k}j=1k
可以使用符号 u ~ L : = u ~ L ( Θ L , k ; ∙ ) \widetilde{u}_L:=\widetilde{u}_L(\Theta_{L,k};\bullet) u L:=u L(ΘL,k;) 来表示通过解冻 u L ∗ u^*_L uL 最后 k k k 层并解决最小化问题而从 u L ∗ u^*_L uL 获得的神经网络
min ⁡ Θ L , k L o s s ( u ˉ L − 1 ∗ ( ∙ ) + u ~ L ( Θ L , k ; ∙ ) ) . \min_{\Theta_{L,k}}Loss(\bar{u}_{L-1}^*(\bullet)+\widetilde{u}_L(\Theta_{L,k};\bullet)). ΘL,kminLoss(uˉL1()+u L(ΘL,k;)).
可以使用 u L ∗ u^*_L uL k k k 层参数作为初始化来解决上述最小化问题,并获得新参数 Θ L , k ∗ \Theta^*_{L,k} ΘL,k。然后可以定义函数 u ~ L ∗ : = u ~ L ( Θ L , k ∗ ; ∙ ) \widetilde{u}_L^*:=\widetilde{u}_L(\Theta_{L,k}^*;\bullet) u L:=u L(ΘL,k;)。因此,第二阶段生成 PDE 的近似解,由下式给出
u a p p r : = u ˉ L − 1 ∗ + u ~ L ∗ u_{appr}:=\bar{u}_{L-1}^*+\widetilde{u}_L^* uappr:=uˉL1+u L
在这里插入图片描述

实验结果

作者将提出的 TS-MGDL 方法应用于 1D、2D 和 3D Burgers 方程的求解上并与单级方法进行了对比。

1D Burgers

u t ( t , x ) + u ( t , x ) u x ( t , x ) − 0.01 π u x x ( t , x ) = 0 , t ∈ ( 0 , 1 ] , x ∈ ( − 1 , 1 ) , u_t(t,x)+u(t,x)u_x(t,x)-\frac{0.01}\pi u_{xx}(t,x)=0,\quad t\in(0,1],x\in(-1,1), ut(t,x)+u(t,x)ux(t,x)π0.01uxx(t,x)=0,t(0,1],x(1,1),

初始条件与边界条件如下:
u ( 0 , x ) = − sin ⁡ ( π x ) , u ( t , − 1 ) = u ( t , 1 ) = 0 u(0,x)=-\sin(\pi x),\\ u(t,-1)=u(t,1)=0 u(0,x)=sin(πx),u(t,1)=u(t,1)=0
作者采用哈默斯利采样方法随机生成训练样本点。沿着边界,总共生成了 N b : = 80 N_b := 80 Nb:=80 个随机点。此外,根据初始条件生成 N 0 : = 120 N_0 := 120 N0:=120 个随机点。在内部区域 ( 0 , 1 ] × ( − 1 , 1 ) (0, 1] × (−1, 1) (0,1]×(1,1) 中,生成 N f : = 10 , 000 N_f := 10, 000 Nf:=10,000 个随机点。测试集由时空区域 [ 0 , 1 ] × [ − 1 , 1 ] [0, 1] × [−1, 1] [0,1]×[1,1] 均匀划分得到的网格点组成,测试点总数为 100 × 256 100×256 100×256

在这里插入图片描述

上表为作为对比的三个单级方法的神经网络设置

在这里插入图片描述

上表为对应的多级网络的设置,这里一共有三级。数字旁边的星号(*)表示第一阶段本级训练时,对应的权重参数固定为前年级训练的权重参数。

在这里插入图片描述

上表为多级网络的训练结果,可以看到,作者在不同级数设置了不同的学习率和epoch。

为早期等级设置更高的学习率,可以使网络快速学习基本(大规模)特征,并继续学习更复杂(小规模)特征。这可以加快训练过程并提高网络的整体准确性。而在更高等级使用较低的学习率有助于微调学习的表示并提高网络的准确性。在训练的第二阶段,使用低学习率使网络能够仔细调整这些表示以更好地适应训练数据,从而提高准确性。

同样,如果早期级数中的epoch数量太大,则可能会陷入不需要的局部最小值,这可能会导致后续等级的优化变得困难。在第一阶段的训练过程中,随着级数的提高,训练难度逐渐加大,epoch数也要相应增加。由于梯度下降通常在迭代开始时表现出损失更快的下降,因此可以通过在第一阶段为等级设置较少量的epoch来利用这一点来捕捉快速下降的阶段。另一方面,在第二阶段建议使用更多的epoch以实现增强的数值近似。

在这里插入图片描述

上表为多级网络和三个单级网络的对比。

在这里插入图片描述

上图为不同阶段结果的可视化。

在这里插入图片描述

误差的可视化。

在这里插入图片描述

上图为四个方法训练时的loss下降情况。

总结

本文针对PDE求解问题,通过设计多级神经网络结构,来让后续网络层学习先前网络层的误差,并设计了对应的两阶段训练方式。最后通过数值实验验证了其有效性。

可以看出来,作者是想模仿Res-Net的方法,但似乎只是更改网络结构带来的数值精度提高并不明显,所以又设计了二阶段训练方式。感觉可以增加对单级神经网络使用二阶段训练的实验作为对比,那样或许会更有说服力。目前本文还未公开代码,但文中说是用DeepXDE实现的。等他公开代码了我应该会来试一下,但感觉我对网络结构方面的研究没太大兴趣呢。

相关链接:

  • 原文:[2309.07401] Multi-Grade Deep Learning for Partial Differential Equations with Applications to the Burgers Equation (arxiv.org)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/100249.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络流量安全分析-工作组异常

在网络中,工作组异常分析具有重要意义。以下是网络中工作组异常分析的几个关键点: 检测网络攻击:网络中的工作组异常可能是由恶意活动引起的,如网络攻击、病毒感染、黑客入侵等。通过对工作组异常的监控和分析,可以快…

Git基础

1、本地版本控制系统、集中式版本控制系统与分布式版本控制系统 文档: Git - 关于版本控制 1. 本地版本控制系统(Local Version Control System): 本地版本控制系统是最简单的版本控制系统,它基于文件的复制…

Vue-2.1scoped样式冲突

默认情况&#xff1a;写在组件中的样式会全局生效->因此很容易造成多个组件之间的样式冲突问题 1.全局样式&#xff1a;默认组件中的样式会作用到全局 2.局部样式&#xff1a;可以给组件加上scoped属性&#xff0c;可以让样式只作用于当前组件 <style scoped> <…

轻松实现时间录入自由!如何在Microsoft Word中轻松插入格式化的日期和时间

在文档中插入当前日期和时间有几个原因。你可能希望将其插入信函或页眉或页脚中。无论是什么原因&#xff0c;Word都可以轻松地将日期和时间插入文档。 如果希望在打开或打印文档时自动更新日期和时间&#xff0c;可以将其作为自动更新的字段插入。该字段也可以随时手动更新。…

H5逆向之远程RPC

引言前一讲说过H5 怎么去抓包,逆向分析。其中说到RPC。这一节详细讲一下。有一种情况,JS 比较复杂,混淆的厉害。 这个时候就用到RPC。原理就是,hook web 浏览器,直接调用js 里边的方法。 Node 服务。为什么用到Node 服务,先来看下这架构 Node 对外提供各种接口,外部可以…

AVS3:DMVR

AVS3中引入了解码端运动矢量修正&#xff08;DMVR,Decoder side Motion Vector Refinement&#xff09;技术&#xff0c;AVS3中的DMVR技术和G.266/VVC类似&#xff0c;它可以在解码端生成运动参数从而减少传输运动参数的码率开销。它的基本思想是将skip/direct模式生成的前后向…

Swagger使用详解

目录 一、简介 二、SwaggerTest项目搭建 1. pom.xml 2. entity类 3. controller层 三、基本使用 1. 导入相关依赖 2. 编写配置文件 2.1 配置基本信息 2.2 配置接口信息 2.3 配置分组信息 2.3.1 分组名修改 2.3.2 设置多个分组 四、常用注解使用 1. ApiModel 2.A…

IDEA的使用(三)Debug(断点调试)(IntelliJ IDEA 2022.1.3版本)

编程过程中如果出现错误&#xff0c;需要查找和定位错误时&#xff0c;借助程序调试可以快速查找错误。 编写好程序后&#xff0c;可能出现的情况&#xff1a; 1.没有bug。 使用Debug的情况&#xff1a; 2.运行后&#xff0c;出现错误或者异常信息&#xff0c;但是通过日志文件…

go的面向对象学习

文章目录 面向对象编程(上)1.问题与解决思路2.结构体1》Golang语言面向对象编程说明2》结构体与结构体变量(实例/对象)的关系的示意图3》入门案例(using struct to solve the problem of cat growing) 3.结构体的具体应用4.创建结构体变量和访问结构体字段5.struct类型的内存分…

vue3 组件v-model绑定props里的值,修改组件的值要触发回调

很早之前就写了&#xff0c;一直没写篇博客记录下 <select v-model"typeVal" />const emit defineEmits([update:type]); const props defineProps({type: { type: String, default: }, });const typeVal computed({get() {return props.type;},set(value…

Docker-compose创建LNMP服务并运行Wordpress网站平台

一、部署过程 1.安装Docker #关闭防火墙 systemctl stop firewalld.service setenforce 0#安装依赖包 yum install -y yum-utils device-mapper-persistent-data lvm2 #设置阿里云镜像源 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/d…

17基于matlab卡尔曼滤波的行人跟踪算法,并给出算法估计误差结果,判断算法的跟踪精确性,程序已调通,可直接运行,基于MATLAB平台,可直接拍下。

17基于matlab卡尔曼滤波的行人跟踪算法&#xff0c;并给出算法估计误差结果&#xff0c;判断算法的跟踪精确性&#xff0c;程序已调通&#xff0c;可直接运行&#xff0c;基于MATLAB平台&#xff0c;可直接拍下。 17matlab卡尔曼滤波行人跟踪 (xiaohongshu.com)

【Redis学习1】Redis持久化机制详解

Redis持久化机制详解 一、Redis为什么需要持久化机制 Redis一般用作缓存&#xff0c;其数据存储在内存中&#xff0c;当Redis宕机后&#xff0c;内存中的数据将会丢失。因此使用缓存的时候&#xff0c;我们经常需要对内存中的数据进行持久化也就是将内存中的数据写入到硬盘中…

Jetpack:004-如何使用文本组件

文章目录 1. 概念介绍2. 使用方法2.1 通用参数2.2 专用参数 3. 示例代码4. 内容总结 我们在上一章回中介绍了Jetpack组件在布局中的对齐方式&#xff0c;本章回中主要介绍文 本组件的使用方法。闲话休提&#xff0c;让我们一起Talk Android Jetpack吧 1. 概念介绍 我们在本章…

基于ffmpeg给视频添加时间字幕

FFmpeg是一套可以用来记录、转换数字音频、视频&#xff0c;并能将其转化为流的开源计算机程序&#xff0c;我们可以基于ffmpeg对视频进行各种操作。本文主要介绍基于ffmpeg给视频添加字幕&#xff0c;字幕的内容为视频所播放的时间&#xff08;故需要安装ffmpeg&#xff0c;具…

ssti 前置学习

python venv环境 可以把它想象成一个容器&#xff0c;该容器供你用来存放你的Python脚本以及安装各种Python第三方模块&#xff0c;容器里的环境和本机是完全分开的 创建venv环境安装flask #apt install python3.10-venv #cd /opt #python3 -m venv flask1 #cd /opt 选…

吃透底层:从路由到前缀树

前言 今天学到关于路由相关文章&#xff0c;发现动态路由中有一个很常见的实现方式是前缀树&#xff0c;很感兴趣这个算法&#xff0c;故进行记录。 前缀树 Trie&#xff08;又被叫做字典树&#xff09;可以看作是一个确定有限状态自动机&#xff0c;尽管边上的符号一般是隐含…

Netty通信在中间件组件中的广泛使用-Dubbo3举例

Netty是一个高性能异步IO通信框架&#xff0c;封装了NIO&#xff0c;对各种bug做了很好的优化解决。所以很多中间件底层的通信都会使用Netty&#xff0c;比如说&#xff1a;Dubbo3&#xff0c;rocketmq&#xff0c;ElasticSearch等。 比方说&#xff0c;我们使用dubbo作为rpc跨…

基于SSM线上课程管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

C++构造函数

在本文中&#xff0c;您将学习C 中的构造函数。您将学习什么是构造函数&#xff0c;如何创建它以及C 中的构造函数类型。 构造函数是成员函数的一种特殊类型&#xff0c;它在创建对象时会自动对其进行初始化。编译器通过其名称和返回类型将给定的成员函数标识为构造函数。构造函…