第100+7步 ChatGPT文献复现:ARIMA-GRNN预测出血热

基于WIN10的64位系统演示

一、写在前面

这一次,我们来解读ARIMA-GRNN组合模型文章,也是老文章了:

《PLoS One》杂志的2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做案例。

这文章做的是用:使用两种ARIMA组合模型预测江苏省出血热发病率。

文章是用单纯的ARIMA模型作为对照,对比了两种组合模型:ARIMA-GRNN模型和ARIMA-NARNN模型。本次,我们来重现一下ARIMA-GRNN模型。

二、闲聊和复现:

1单纯ARIMA模型构建

第一段很简单地把构建最优ARIMA模型的整个流程说了下来:

还是老套路:

① 2004-2011年的数据用于建模,来个折线图看看趋势:

很明显,有季节性,所以文章做了1次季节性拆分和1次一般拆分(这个一般拆分也不是太必要,从图来看没有明显上升或者下降趋势,可能是不做通不过ADF检验吧),图1可以这么做:

② 至于ADF检验,那就得转到Eviews了:

通过ADF检验,数据平稳,文章用R做的吧,具体数值不太一样。

③ 开始找最优的ARIMA模型:

凑出了表1和表2,最终选择模型就是ARIMA (0,1,1)×(0,1,1)12。

④ 使用最优模型预测2012年的发病率:

得手动输入下要预测的月份,然后软件才能进行预测:

算一下单纯ARIMA的拟合误差分别是:MAE=0.0093,MAPE=0.4790;预测误差分别是:MAE=0.0091,MAPE=0.5636。

(2)ARIMA-GRNN组合模型

首先,得看看组合的策略,见文章描述(翻译):

GRNN模型是基于非线性回归理论的平滑函数的通用逼近器。GRNN模型由Speckt设计,有四层:输入层、模式层、求和层和输出层。GRNN的网络架构之前已经提及。在建立ARIMA模型之后,我们可以获得HFRS的估计月发病率。由于ARIMA模型已用于分析实际数据的线性部分,残差应包含非线性关系。为了在GRNN模型中包含更多有效和有用的信息,特别是当存在强烈的季节性趋势时,使用时间值作为GRNN的一个输入是必要的。在这项研究中,ARIMA的估计月发病率值和相应的时间值被用作GRNN模型的两个输入,而实际月发病率值被用作GRNN模型的输出。然后我们可以通过这种混合模型捕获非线性成分。GRNN的性能主要取决于光滑因子。选择最优光滑因子需要一定量的试验。光滑因子的选择采用了Specht提出的方法。我们在建模数据集中随机选取两个样本作为测试样本;其他样本被用来拟合GRNN模型

不知道大家看懂了没:

简单来说就是,首先使用2004-01到2011-12的数据构建并找出最优模型ARIMA (0,1,1)×(0,1,1)12,并使用模型进行拟合(2004-01至2011-12)和预测(2012-01至2012-12);然后从2004-01到2011-12这些时间点中,随机抽取2个时间点的模型拟合值,比如说是2004-05和2009-03;把2004-05和2009-03的模型拟合值作为输入,丢进GRNN,同时告诉GRNN,2004-05和2009-03的拟合值对应的真实值是什么;通过这种方式训练GRNN模型,本质上是寻找GRNN的唯一参数,叫做光滑因子;找到了这个最优的GRNN模型(或者说确定了最优的光滑因子),再把之前ARIMA拟合和预测的所有数值,放进最优GRNN模型,输出的就是ARIMA-GRNN组合模型的结果。

至于为什么是随机抽取2个数值,咱也不懂,文献说的。待会操作过程中会发现其中的弊端。

软件使用的是Matlab,这里我就用我自己DIY的小程序(传送门)

① SPSS拿到拟合值与预测值:

② 打开Matlab-GRNN小程序,输入数据(确保拟合值和真实值一一对应,长度要一致):

看结果:

最优光滑因子是0.001,给出了一个图(就是文章的图三),似乎形状不一样呢,文章中是U型,那我们继续随机(随机放几个图得了):

我随机了几次,然后最优光滑因子嘛,有这几个:0.126、0.061、0.088等。进行最后的输出,看看组合模型的效果:

我先把ARIMA的指标列出来,方便对比:

拟合误差:MAE=0.0093,MAPE=0.4790;

ARIMA-GRNN不同光滑因子:

0.126:拟合误差:MAE=0.0084,MAPE=0.4674

0.061:拟合误差:MAE=0.0077,MAPE=0.4167

0.088:拟合误差:MAE=0.0079,MAPE=0.4334

0.049:拟合误差:MAE=0.0077,MAPE=0.4089

总体来看,性能是都是下降的。但是是在随机不出文章中的那两个数值,就不强求了,它的最优光滑因子是0.0265。然后MAE和MAPE能刷到0.0063和0.2815,优秀。

所以我这个软件有个BUG,就是不能自定义输入光滑因子,得到Matlab中操作才行,先埋个坑吧(早已把Matlab卸载了)

三、个人感悟

可以看到,ARIMA-GRNN组合模型的构建策略由于存在随机性,因此得到的结果不尽相同,但是总体来看性能是有所改善的,在文中清清楚就行了。

其实有些数据吧,用了组合模型,性能反而变差了,它并不是万能的。

四、数据

链接:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135492

有童鞋问咋下载数据:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/9973.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录 动态规划 刷题记录

动态规划 动规的五部曲: 确定dp数组(dp table)以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组509.斐波那契数列 70.爬楼梯 746.使用最小花费爬楼梯 62.不同路径 63.不同路径II 343.整数拆分 96.不同的二叉搜索树 本轮树可以分为当1,2,3……

uni-app(五):原生插件打包并使用(Android)

原生插件打包并使用 解决Gradle不显示命令问题解决方法 运行打包查看打包好的包引入到uni-app项目中编写配置文件TestModuleTestComponent 制作基座并运行 解决Gradle不显示命令问题 解决方法 运行打包 查看打包好的包 引入到uni-app项目中 编写配置文件 TestModule {"n…

vue2 Avoided redundant navigation to current location

再次点击同一个链接会报错 每次使用 push 方法时带上两个回调函数 this.$router.push({name: item.name}, ()>{}, ()>{}) //第二、第三个参数分别为成功和失败的回调函数重写 Vue-router 原型对象上的 push 函数不行 https://blog.csdn.net/weixin_43615570/article/d…

Linux -- Git

Git Git 是一个开源的分布式版本控制系统,主要用于软件开发中的源代码管理。它由 Linus Torvalds 创建,也是 Linux 内核的开发者。Git 使得多个开发者可以在同一个项目上协作,而不会相互干扰。它允许开发者在本地计算机上创建多个分支&#…

番外篇 | YOLOv8改进之利用SCINet解决黑夜目标检测问题 | 低照度图像增强网络

前言:Hello大家好,我是小哥谈。自校正照明网络(Self-Calibrating Illumination Network, SCINet)是一种基于深度学习的图像照明算法,可以自动分析图像的内容并根据图像内容自动优化照明。SCINet是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制…

Php php7的特性

1. 性能优化 PHP7引入了Zend Engine 3.0,显著提高了执行效率,相比PHP 5.x,性能提升了2-3倍。这个特性无法直接通过代码示例展示,但你可以感受到在升级到PHP7后,相同代码的执行速度更快。 2. 函数返回类型声明 允许在…

【系统分析师】软件架构设计

文章目录 1、构件与软件复用1.1 主流构件标准1.2 构件获取与管理1.3 构件复用的方法 2、软件架构概述3、软件架构建模4、软件架构风格4.1 经典架构风格4.2 层次架构风格4.3 富互联网应用-RIA 5、面向服务的架构5.1 SOA概述5.2 SOA的关键技术5.3 SOA的实现方法 6、软件架构评估6…

Nginx - server、listen、server_name和多服务请求处理(三)

server 上下文 server { }server指令用于配置一个虚拟服务。listen指令描述了本服务可接受链接的所有地址和端口,server_name指令列举了所有服务的名字,例如 server {listen 80;server_name example.org www.example.org; }listen 指令 Syntax: …

Rust - 基础语法

文章目录 注释基本输出输出 {} 变量重影(Shadowing) 数据类型整数型(Integer)浮点数型(Floating-Point) f32、f64数学计算布尔型 bool字符型 char元组 ()数组 [].. 表示范围切片 slice结构体枚举match 处理…

AI大模型探索之路-训练篇20:大语言模型预训练-常见微调技术对比

系列篇章💥 AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概…

nginx 详解

Nginx(发音为“Engine-X”)是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3代理服务器。Nginx以其高稳定性、丰富的功能集、简单的配置和低资源消耗而闻名。它特别适用于处理高并发请求,这部分归功于其事件驱动和异步架构。…

RF Plasma gernerator-系列(RF-5KW Adtec)说明书TX06-9001-00

RF Plasma gernerator-系列(RF-5KW Adtec)说明书TX06-9001-00

深度学习课程论文精读——ESRGAN

目录 1.研究概述 2.论文创新 2.1 改进生成器的网络框架 2.2 改进判别器 2.3 改进感知损失 2.4 网络插值 3.实验 3.1 评价指标 3.2 训练细节 3.3 对比实验 3.4 消融实验 3.5 网络插值 4.总结 5.阅读参考 文章标题:《ESRGAN: Enhanced Super-Resolution…

Hive优化(1)——分桶采样

分桶(Bucketing) 分桶是将数据按照某个字段的哈希值进行分组存储的一种技术。它的原理是将数据按照指定字段的哈希值分成固定数量的桶,将每条记录分配到对应的桶中。分桶可以帮助优化特定类型的查询,例如连接查询和聚合操作&…

2024OD机试卷-攀登者1 (java\python\c++)

题目:攀登者1 题目描述 攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。 地图表示为一维数组,数组的索引代表水平位置,数组的元素代表相对海拔高度。其中数组元素0代表地面。 例如:[0,1,2,4,3,1,0,0,1,2,3,1,2,1,0],代表如下图所示的地图,地图中有两个山脉位置分别…

TS-声明文件

目录 1,什么是声明文件2,作用3,位置1,tsconfig.json 配置的包含目录中2,node_modules/types 目录中3,typeRoots 配置项中的目录4,与 js 文件同名同目录的文件 4,编写1,ts…

java中List的toArray()方法

toArray()介绍 toArray()方法是List接口中提供的方法,用来实现List对象转换为数组对象的功能。 toArray()方法有两种形式,无参方法和带泛型的方法,接下来给出例子。 1.toArray() // toArray()源码public Object[] toArray() {return Arrays.…

携手鲲鹏昇腾 HashData展现云原生数仓创新力量

​5月9日-11日,鲲鹏昇腾开发者大会2024在北京中关村国际创新中心举行,众多行业领袖、专家学者及优秀开发们齐聚一堂,分享产业趋势、技术创新和应用实践。 酷克数据作为华为鲲鹏生态重要合作伙伴,受邀出席本次大会,展示…

C++ Primer Plus 知识的讲解

程序模板 #pragma region xxx.cpp //xxx.cpp -- xxx #if 0 #include <iostream> int main() {using namespace std;return 0; } #endif #pragma endregionC Primer Plus 知识的讲解 第一章&#xff1a;预备知识 本章内容包括&#xff1a; .C语言和C的发展历史和基本原…

大语言模型LLM原理篇

大模型席卷全球&#xff0c;彷佛得模型者得天下。对于IT行业来说&#xff0c;以后可能没有各种软件了&#xff0c;只有各种各样的智体&#xff08;Agent&#xff09;调用各种各样的API。在这种大势下&#xff0c;笔者也阅读了很多大模型相关的资料&#xff0c;和很多新手一样&a…