计算方法实验9:Romberg积分求解速度、位移

任务

在这里插入图片描述

  1. 输出质点的轨迹 ( x ( t ) , y ( t ) ) , t ∈ { 0.1 , 0.2 , 0.3 , . . . , 10 } (x(t), y(t)), t\in \{0.1, 0.2, 0.3, ..., 10\} (x(t),y(t)),t{0.1,0.2,0.3,...,10},并在二维平面中画出该轨迹.
  2. 请比较M分别取4, 8, 12, 16, 20 时,Romberg积分达到要求精度的比例(达到误差要求的次数/调用总次数),分析该比例随M 的变化。

算法

现在要用数值方法求 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \, dx abf(x)dx,设 h = b − a n h=\frac{b-a}{n} h=nba,已知:

复化梯形积分 T n ( f ) = h [ 1 2 f ( a ) + ∑ i = 1 n − 1 f ( a + i h ) + 1 2 f ( b ) ] T_{n}\left(f\right)=h\left[\frac{1}{2}f\left(a\right)+\sum_{i=1}^{n-1}f\left(a+ih\right)+\frac{1}{2}f\left(b\right)\right] Tn(f)=h[21f(a)+i=1n1f(a+ih)+21f(b)]

复化Simpson积分 S n ( f ) = h 3 [ f ( a ) + 4 ∑ i = 0 m − 1 f ( x 2 i + 1 ) + 2 ∑ i = 1 m − 1 f ( x 2 i ) + f ( b ) ] S_{n}\left(f\right)=\frac{h}{3}\left[f\left(a\right)+4\sum_{i=0}^{m-1}f\left(x_{2i+1}\right)+2\sum_{i=1}^{m-1}f\left(x_{2i}\right)+f\left(b\right)\right] Sn(f)=3h[f(a)+4i=0m1f(x2i+1)+2i=1m1f(x2i)+f(b)].

( T n ( f ) − T 2 n ( f ) ) ( T_n( f) - T_{2n}( f) ) (Tn(f)T2n(f)) 作 为 T 2 n ( f ) T_{2n}(f) T2n(f)的修正值补充到 I ( f ) I(f) I(f),即
I ( f ) ≈ T 2 n ( f ) + 1 3 ( T 2 n ( f ) − T n ( f ) ) = 4 3 T 2 n − 1 3 T n = S n I(f)\approx T_{2n}(f)+\frac{1}{3}\left(T_{2n}\left(f\right)-T_{n}\left(f\right)\right)=\frac{4}{3}T_{2n}-\frac{1}{3}T_{n}=S_{n} I(f)T2n(f)+31(T2n(f)Tn(f))=34T2n31Tn=Sn

其结果是将复化梯形求积公式组合成复化 Simpson 求积公式, 截断误差由 O ( h 2 ) O(h^2) O(h2)提高到 O ( h 4 ) O(h^4) O(h4),这种手段称为外推算法,该算法在不增加计算量的前提下提高了误差的精度.不妨对 S 2 n ( f ) , S n ( f ) S_{2n}(f),S_n(f) S2n(f),Sn(f)再作一次线性组合:

I ( f ) − S n ( f ) = − f ( 4 ) ( ξ ) 180 h 4 ( b − a ) ≈ d h 4 I\left(f\right)-S_{n}\left(f\right)=-\frac{f^{\left(4\right)}\left(\xi\right)}{180}h^{4}\left(b-a\right)\approx dh^{4} I(f)Sn(f)=180f(4)(ξ)h4(ba)dh4
I ( f ) − S 2 n ( f ) = − f ( 4 ) ( η ) 180 ( h 2 ) 4 ( b − a ) ≈ d ( h 2 ) 4 I(f)-S_{2n}(f)=-\frac{f^{(4)}(\eta)}{180}\left(\frac{h}{2}\right)^{4}(b-a)\approx d\left(\frac{h}{2}\right)^{4} I(f)S2n(f)=180f(4)(η)(2h)4(ba)d(2h)4

I ( f ) ≈ S 2 n ( f ) + 1 15 ( S 2 n ( f ) − S n ( f ) ) = C n ( f ) I\left(f\right)\approx S_{2n}\left(f\right)+\frac{1}{15}\left(S_{2n}\left(f\right)-S_{n}\left(f\right)\right)=C_{n}\left(f\right) I(f)S2n(f)+151(S2n(f)Sn(f))=Cn(f)
复化 Simpson 公式组成复化 Cotes 公式,其截断误差是 O ( h 6 ) . O(h^6). O(h6).同理对 Cotes公式进行线性组合:
I ( f ) − C 2 n ( f ) = e ( h 2 ) 6 I ( f ) − C n ( f ) = e h 6 I\left(f\right)-C_{2n}\left(f\right)=e\left(\frac{h}{2}\right)^{6}\\I\left(f\right)-C_{n}\left(f\right)=eh^{6} I(f)C2n(f)=e(2h)6I(f)Cn(f)=eh6
得到具有 7 次代数精度和截断误差是 O ( h 8 ) O(h^8) O(h8)的 Romberg 公式:
R n ( f ) = C 2 n ( f ) + 1 63 ( C 2 n ( f ) − C n ( f ) ) R_{n}\left(f\right)=C_{2n}\left(f\right)+\frac{1}{63}\left(C_{2n}\left(f\right)-C_{n}\left(f\right)\right) Rn(f)=C2n(f)+631(C2n(f)Cn(f))

为了便于在计算机上实现 Romberg 算法,将 T n , S n , C n , R n , ⋯ T_n,S_n,C_n,R_n,\cdots Tn,Sn,Cn,Rn,统一用 R k , j R_{k,j} Rk,j 表示,列标 j = 1 , 2 , 3 , 4 j=1,2,3,4 j=1,2,3,4分别表示梯形、Simpson、Cotes 、Romberg积分,行标 k k k表示步长 h k = h 2 k − 1 h_k=\frac h{2^{k-1}} hk=2k1h,得到Romberg 计算公式:
R k , j = R k , j − 1 + R k , j − 1 − R k − 1 , j − 1 4 j − 1 − 1 , k = 2 , 3 , ⋯ R_{k,j}=R_{k,j-1}+\frac{R_{k,j-1}-R_{k-1,j-1}}{4^{j-1}-1},k=2,3,\cdots Rk,j=Rk,j1+4j11Rk,j1Rk1,j1,k=2,3,
对每一个 k , j k,j k,j从 2 做到 k k k,一直做到 ∣ R k , k − R k − 1 , k − 1 ∣ |R_k,k-R_{k-1,k-1}| Rk,kRk1,k1小于给定控制精度时停止计算.
注:下面代码中数组下标从0开始.

代码

C++实现Romberg积分运算

#include<bits/stdc++.h>
using namespace std;int satisfiedCount;long double ax(long double t);
long double ay(long double t);
long double romberg(function<long double(long double)> f, long double a, long double b, long double eps, int maxIter, bool isX);// Perform the Romberg integrationint main() 
{long double eps = 1e-6, proportion;int maxIter;satisfiedCount = 0;maxIter = 4;cout << "maxIter = " << maxIter << endl;for (long double t = 0.1; t <= 10; t += 0.1) { long double vx = romberg(ax, 0, t, eps, maxIter, 0);long double vy = romberg(ay, 0, t, eps, maxIter, 0);long double x = romberg([&](long double t) { return vx; }, 0, t, eps, maxIter, 1);long double y = romberg([&](long double t) { return vy; }, 0, t, eps, maxIter, 0);cout << fixed << setprecision(1) << "At t = " << t << ", vx = " << setprecision(6) << vx << ", vy = " << setprecision(6) << vy << ", " << "(x, y) = (" << setprecision(6) << x << ", " << setprecision(6) << y << ")" << endl;}proportion = (long double)satisfiedCount / 100;cout << "At maxIter = " << maxIter << ", proportion of times the error requirement of x was satisfied: " << proportion << endl;satisfiedCount = 0;maxIter = 8;cout << "maxIter = " << maxIter << endl;ofstream outFile("trajectory.txt");for (long double t = 0.1; t <= 10; t += 0.1) {long double vx = romberg(ax, 0, t, eps, maxIter, 0);long double vy = romberg(ay, 0, t, eps, maxIter, 0);long double x = romberg([&](long double t) { return vx; }, 0, t, eps, maxIter, 1);long double y = romberg([&](long double t) { return vy; }, 0, t, eps, maxIter, 0);cout << fixed << setprecision(1) << "At t = " << t << ", vx = " << setprecision(6) << vx << ", vy = " << setprecision(6) << vy << ", " << "(x, y) = (" << setprecision(6) << x << ", " << setprecision(6) << y << ")" << endl;outFile << fixed << setprecision(6) << x << " " << y << "\n";//把坐标写入文件,方便画轨迹}proportion = (long double)satisfiedCount / 100;cout << "At maxIter = " << maxIter << ", proportion of times the error requirement of x was satisfied: " << proportion << endl;satisfiedCount = 0;maxIter = 12;cout << "maxIter = " << maxIter << endl;for (long double t = 0.1; t <= 10; t += 0.1) {long double vx = romberg(ax, 0, t, eps, maxIter, 0);long double vy = romberg(ay, 0, t, eps, maxIter, 0);long double x = romberg([&](long double t) { return vx; }, 0, t, eps, maxIter, 1);long double y = romberg([&](long double t) { return vy; }, 0, t, eps, maxIter, 0);cout << fixed << setprecision(1) << "At t = " << t << ", vx = " << setprecision(6) << vx << ", vy = " << setprecision(6) << vy << ", " << "(x, y) = (" << setprecision(6) << x << ", " << setprecision(6) << y << ")" << endl;}proportion = (long double)satisfiedCount / 100;cout << "At maxIter = " << maxIter << ", proportion of times the error requirement of x was satisfied: " << proportion << endl;satisfiedCount = 0;maxIter = 16;cout << "maxIter = " << maxIter << endl;for (long double t = 0.1; t <= 10; t += 0.1) {long double vx = romberg(ax, 0, t, eps, maxIter, 0);long double vy = romberg(ay, 0, t, eps, maxIter, 0);long double x = romberg([&](long double t) { return vx; }, 0, t, eps, maxIter, 1);long double y = romberg([&](long double t) { return vy; }, 0, t, eps, maxIter, 0);cout << fixed << setprecision(1) << "At t = " << t << ", vx = " << setprecision(6) << vx << ", vy = " << setprecision(6) << vy << ", " << "(x, y) = (" << setprecision(6) << x << ", " << setprecision(6) << y << ")" << endl;}proportion = (long double)satisfiedCount / 100;cout << "At maxIter = " << maxIter << ", proportion of times the error requirement of x was satisfied: " << proportion << endl;satisfiedCount = 0;maxIter = 20;cout << "maxIter = " << maxIter << endl;for (long double t = 0.1; t < 10.1; t += 0.1) {long double vx = romberg(ax, 0, t, eps, maxIter, 0);long double vy = romberg(ay, 0, t, eps, maxIter, 0);long double x = romberg([&](long double t) { return vx; }, 0, t, eps, maxIter, 1);long double y = romberg([&](long double t) { return vy; }, 0, t, eps, maxIter, 0);cout << fixed << setprecision(1) << "At t = " << t << ", vx = " << setprecision(6) << vx << ", vy = " << setprecision(6) << vy << ", " << "(x, y) = (" << setprecision(6) << x << ", " << setprecision(6) << y << ")" << endl;}proportion = (long double)satisfiedCount / 100;cout << "At maxIter = " << maxIter << ", proportion of times the error requirement of x was satisfied: " << proportion << endl;return 0;
}long double ax(long double t) 
{return sin(t) / (1 + sqrt(t));
}long double ay(long double t) 
{return log(t + 1) / (t + 1);
}// Perform the Romberg integration
long double romberg(function<long double(long double)> f, long double a, long double b, long double eps, int maxIter, bool isX) {long double h[maxIter], r[maxIter][maxIter];h[0] = b - a;r[0][0] = 0.5 * h[0] * (f(a) + f(b));for (int i = 1; i < maxIter; i++) {h[i] = 0.5 * h[i-1];long double sum = 0;for (int k = 0; k < pow(2, i-1); k++)sum += f(a + (2*k+1) * h[i]);r[i][0] = 0.5 * r[i-1][0] + h[i] * sum;for (int j = 1; j <= i; j++)r[i][j] = r[i][j-1] + (r[i][j-1] - r[i-1][j-1]) / (pow(4, j) - 1);if (i > 1 && fabs(r[i][i] - r[i-1][i-1]) < eps){if(isX)satisfiedCount++;return r[i][i];}}return r[maxIter-1][maxIter-1];
}

python可视化运动轨迹

import matplotlib.pyplot as pltwith open('trajectory.txt', 'r') as file:lines = file.readlines()x, y = zip(*[(float(line.split()[0]), float(line.split()[1])) for line in lines])plt.plot(x, y, 'o-')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Plot of points with smooth curve')
plt.show()

结果

部分运算结果

在这里插入图片描述

轨迹可视化结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/9025.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯省三爆改省二,省一到底做错了什么?

到底怎么个事 这届蓝桥杯选的软件测试赛道&#xff0c;都说选择大于努力,软件测试一不卷二不难。省赛结束&#xff0c;自己就感觉稳啦&#xff0c;全部都稳啦。没想到一出结果&#xff0c;省三&#xff0c;g了。说落差&#xff0c;是真的有一点&#xff0c;就感觉和自己预期的…

汽车软件研发工具链丨怿星科技新产品重磅发布

“创新引领未来”聚焦汽车软件新基建&#xff0c;4月27日下午&#xff0c;怿星科技2024新产品发布会在北京圆满举行&#xff01;智能汽车领域的企业代表、知名大企业负责人、投资机构代表、研究机构代表齐聚现场&#xff0c;线上直播同步开启&#xff0c;共同见证怿星科技从单点…

经典回溯算法之N皇后问题

问题描述&#xff1a; 有一个N*N的棋盘&#xff0c;需要将N个皇后放在棋盘上&#xff0c;保证棋盘的每一行每一列每一左斜列每一右斜列都最多只能有一个皇后。 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如…

Java | Leetcode Java题解之第71题简化路径

题目&#xff1a; 题解&#xff1a; class Solution {public String simplifyPath(String path) {String[] names path.split("/");Deque<String> stack new ArrayDeque<String>();for (String name : names) {if ("..".equals(name)) {if …

【基于 PyTorch 的 Python 深度学习】5 机器学习基础(3)

前言 文章性质&#xff1a;学习笔记 &#x1f4d6; 学习资料&#xff1a;吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》【ISBN】978-7-111-71880-2 主要内容&#xff1a;根据学习资料撰写的学习笔记&#xff0c;该篇主要介绍了单 GPU 加速和多 GPU 加速&#xff0c;以及…

英语口语情景对话视频软件分享!

在当今全球化的时代&#xff0c;英语已成为一种通用的国际语言。为了提高英语口语能力&#xff0c;越来越多的人选择使用英语口语情景对话视频软件。本文将为您推荐几款备受欢迎的英语口语情景对话视频软件&#xff0c;帮助您轻松提高英语口语水平。 AI外语陪练 AI外语陪练软件…

已经有 Prometheus 了,还需要夜莺?

谈起当下监控&#xff0c;Prometheus 无疑是最火的项目&#xff0c;如果只是监控机器、网络设备&#xff0c;Zabbix 尚可一战&#xff0c;如果既要监控设备又要监控应用程序、Kubernetes 等基础设施&#xff0c;Prometheus 就是最佳选择。甚至有些开源项目&#xff0c;已经内置…

LoRA的原理简介

在文章开始前先澄清一个概念&#xff0c;需要区分形近的单词"LoRa"&#xff08;long range&#xff09;&#xff0c;这是一项通信技术。熟悉物联网行业的朋友相对会比较熟悉LoRa这项技术&#xff0c;因为有些设备比如电梯的控制就使用了这个技术进行本地数据和命令的…

小红书释放被封手机号 无限注册

前几年抖音也可以释放被封手机号 那时候都不重视 导致现在被封手机号想释放 基本不可能的 或者就是最少几百块 有专业的人帮你通过某些信息差释放 本教程是拆解 小红书被封手机号怎么释放&#xff0c;从今年开始&#xff0c;被封的手机号无法注销了 所以很困扰 那么本教程来…

基于一种改进小波阈值的微震信号降噪方法(MATLAB)

微震是指岩体由于在人为扰动或自然原因下受力变形&#xff0c;发生破裂过程中能量积聚而释放的弹性波或应力波。微震信号具有信噪比低、不稳定性、瞬时性和多样性等特点。因此&#xff0c;在任何损坏之前都会出现微小的裂缝&#xff0c;这种微小的裂缝是由岩层中应力和应变的变…

PPT职场课:话术+技巧+框架+案例,告别只会念PPT不会讲(8节课)

课程目录 001-讲PPT如何开场及导入?5个简单实用的方法.mp4 002-讲PPT如何过渡衔接结尾?6类话术争来就用.mp4 003-掌握这3个逻辑表达万能框架&#xff0c;搞定98的PPT.mp4 004-学会这3种PPT结构讲解技巧告别只会念不会讲(上).mp4 005-学会这3种PPT结构讲解技巧告别只会念…

Logstash分析MySQL慢查询日志实践

删除匹配到的行&#xff0c;当前行信息不记录到message中

106网页短信群发平台

什么是106网页短信群发平台&#xff1f; 106网页短信群发平台是一种便捷的在线群发工具&#xff0c;通过该平台用户可以方便地向大量的手机号码*。相比传统的群发方式&#xff0c;106网页群发平台具有更高效、更便捷的特点。 为什么选择106网页短信群发平台&#xff1f; 高效快…

浙大×移动云,携手点亮AI新时代

近年来&#xff0c;中国移动依托强大的算网资源优势&#xff0c;围绕大模型训练、推理和应用三大场景&#xff0c;打造了一站式智算产品体系。该体系旨在为客户提供覆盖资源、平台、应用的AI全链路服务。目前&#xff0c;一站式智算产品体系已在浙江大学智算中心和许昌中原智算…

C++:编程界的王者,引领未来的创新之路

在编程语言的浩瀚星空中&#xff0c;C犹如一颗耀眼的恒星&#xff0c;以其卓越的性能、深厚的底蕴和广泛的应用领域&#xff0c;持续引领着编程界的发展。它不仅在当下拥有无可替代的地位&#xff0c;更在未来展现出无限的潜力和可能性。 一、C&#xff1a;编程界的王者风范 …

若依框架dialog弹窗取消点击空白出关闭

如果想全局取消的话就找到main.js在里面加上下面的一行代码&#xff0c;添加完成之后记得清楚浏览器缓存重新加载js文件。 Element.Dialog.props.closeOnClickModal.default false;如果想指定某个弹窗取消点击空白处关闭&#xff0c;那么就找到那个弹窗加上。添加完毕之后刷新…

【python】基于岭回归算法对学生成绩进行预测

前言 在数据分析和机器学习领域&#xff0c;回归分析是一种预测连续数值的监督学习技术。当数据特征与目标变量之间存在线性关系时&#xff0c;线性回归模型尤其有用。然而&#xff0c;当特征数量多于样本数量&#xff0c;或者特征之间存在多重共线性时&#xff0c;普通最小二…

unaipp推荐算法的汽车租赁系统zaxzu 微信小程序hbuiderx

随着现代汽车租赁管理的快速发展&#xff0c;可以说汽车租赁管理已经逐渐成为现代汽车租赁管理过程中最为重要的部分之一。但是一直以来我国传统的汽车租赁管理并没有建立一套完善的行之有效的汽车租赁管理系统&#xff0c;传统的汽车租赁管理已经无法适应高速发展&#xff0c;…

基于SpringBoot+Vue点餐系统设计和实现(源码+LW+部署讲解)

&#x1f339;作者简介&#xff1a;✌全网粉丝10W&#xff0c;前大厂员工&#xff0c;多篇互联网电商推荐系统专利&#xff0c;现有多家创业公司&#xff0c;致力于建站、运营、SEO、网赚等赛道。也是csdn特邀作者、博客专家、Java领域优质创作者&#xff0c;博客之星、掘金/华…

nginx的应用部署nginx

这里写目录标题 nginxnginx的优点什么是集群常见的集群什么是正向代理、反向代理、透明代理常见的代理技术正向代理反向代理透明代理 nginx部署 nginx nginx&#xff08;发音同enginex&#xff09;是一款轻量级的Web服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&…