通过自适应提示提升大语言模型的零样本推理能力

随着大模型(LLMs)的快速发展,它们在自然语言处理(NLP)任务上取得了前所未有的成就。特别是,LLMs展现出了强大的推理和规划能力,这得益于它们的少样本和零样本学习能力。然而,现有的方法仍存在一些限制,例如在少样本设置中,性能对示例选择非常敏感,而在零样本设置中,由于缺乏对LLMs的指导,性能受限。

为了解决这些限制,论文提出了COSP,这是一种不需要手工示例或真实标签的算法。作为一种新颖的提示设计方法,它旨在提升大模型(LLMs)在零样本(Zero-Shot)推理任务中的表现。该方法不依赖于手工制作的响应或真实标签,而是通过利用LLM自身生成的输出来构建上下文示例,从而引导模型进行更准确的推理。COSP包含两个主要阶段:

第一阶段:构建生成响应池和示例选择器

在这一阶段,COSP首先通过零样本链式思考(Zero-shot CoT)对所有测试问题进行查询,收集LLM生成的响应。这一过程涉及以下步骤:

  1. 候选池构建:对于每个测试问题,LLM被查询多次以生成多个推理路径和可能的答案。这些路径和答案构成了候选池,其中的每个元素都是一个潜在的示例。

  2. 一致性驱动的示例选择:从候选池中选择一组示例。这一选择过程非常关键,因为:

    • 需要从大量候选项中选择少量(通常小于等于10)示例。
    • 候选池本身可能包含错误,因为它们是在没有真实标签的情况下生成的。

    为了解决这些问题,COSP使用自一致性来精简候选池,并在没有真实标签的情况下选择示例。具体来说,对于每个测试问题,COSP首先计算所有预测答案的多数投票预测,并保留导致多数投票预测的推理路径,同时剪枝掉其他可能错误的推理-答案对。

  3. 结果熵计算:COSP使用结果熵作为自一致性的度量,以识别适合的问答对。结果熵是一个受自一致性启发的度量,用于捕捉LLM对其预测的不确定性。

  4. 惩罚重复性:COSP还引入了一种量化措施来惩罚重复性,因为重复的示例往往会导致性能下降。

第二阶段:使用生成的上下文示例进行查询

在第二阶段,COSP将选定的示例作为上下文信息与测试问题结合,并再次查询LLM。这一阶段的步骤如下:

  1. 上下文示例的拼接:将选定的示例作为上下文信息与测试问题拼接,形成新的查询。

  2. LLM的再次查询:使用新的查询对LLM进行查询,以生成第二轮的推理路径和答案。

  3. 最终预测的形成:通过对第一阶段和第二阶段生成的所有答案进行多数投票,形成每个问题的最终预测。

COSP方法的一个关键创新之处在于它如何从LLM自身的输出中选择和构建示例集。通过精心设计的评分函数,COSP在考虑一致性、多样性和重复性的基础上,选择最有助于提升LLM推理能力的示例。此外,COSP还可以适应性地调整每个问题所使用的示例数量,以及在少数样本设置中利用标记样本来增强性能。

实验结果

在实验部分,COSP方法在多种算术和逻辑推理任务上的表现进行了全面评估,涉及了PaLM-62B、PaLM-540B和GPT-3三种大型语言模型。实验的目的在于验证COSP在零样本学习环境下提升LLMs推理能力的有效性。结果显示,在没有任何真实标签指导的情况下,COSP通过自适应选择和构建示例集,显著提高了模型的推理准确率,平均提升幅度达到了10-15%。这一改进在统计上具有显著性,证明了COSP方法在缺乏明确示例和标签时,依然能够有效地引导LLMs进行逻辑推理。

特别值得一提的是,COSP在多数任务上的表现不仅超越了传统的零样本基线,而且达到了与少数样本学习方法相当的水平。这一发现表明,COSP提供的自适应提示对于LLMs来说是一种有效的推理引导手段,能够在没有额外标注数据的情况下,复现类似少数样本学习的性能提升。此外,COSP的方法还显示出了良好的通用性和适应性,这意味着它可以被广泛应用于多种不同的LLMs和任务类型中。

尽管COSP在实验中取得了令人鼓舞的结果,但论文也指出了该方法的一些局限性。例如,COSP依赖于模型的自一致性来预测准确性,这可能在某些任务上不总是有效的。此外,当面对极端困难的任务时,COSP可能无法提供显著的性能改进。尽管如此,COSP仍然为零样本推理任务提供了一个有前景的解决方案,并且它的设计理念为未来LLMs的应用和进一步的研究开辟了新的可能性。

论文链接:http://arxiv.org/pdf/2305.14106

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/8773.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

spring模块(六)spring监听器(2)@EventListener

一、介绍 监听器的简化写法 二、原理 三、使用 Slf4j Component public class MyTask {EventListenerpublic void onApplicationEvent(ApplicationEvent event) {if (event instanceof ContextRefreshedEvent) {log.info("监听到 ContextRefreshedEvent...");}if…

Seata之XA 模式的使用

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 Seata 是一款开源的…

全网最全:一文入门最热的LLM应用开发框架LangChain

f#### 1. LangChain 简介 1.1. LangChain 发展史 LangChain 的作者是 Harrison Chase,最初是于 2022 年 10 月开源的一个项目,在 GitHub 上获得大量关注之后迅速转变为一家初创公司。2017 年 Harrison Chase 还在哈佛上大学,如今已是硅谷的…

CPU基本知识点

目录 1.概念 2.分类 3.运作原理 4.指令系统 1.概念 CPU:英文Central Processing Unit,即中央处理器。 解释和执行指令的功能单元,它是计算机的中枢神经系统(即核心)。 是计算机最核心的部件,主要是运算…

大家都是怎么写毕业论文的? 推荐4个AI工具

写作这件事一直让我们从小学时期就开始头痛,初高中时期800字的作文让我们焦头烂额,一篇作文里用尽了口水话,拼拼凑凑才勉强完成。 大学时期以为可以轻松顺利毕业,结果毕业前的最后一道坎拦住我们的是毕业论文,这玩意不…

Java中包的概念package

Package Package:包 指明方法、类所处的包; 将类分配到不同的包中,方便管理; 用于指明文件中定义的类、接口等结构所在的包; 一个源文件只要一个包的声明语句,必须放到开头; 属于标识符,满足命…

细说夜莺监控系统告警自愈机制

虽说监控系统最侧重的功能是指标采集、存储、分析、告警,为了能够快速恢复故障,告警自愈机制也是需要重点投入建设的,所有可以固化为脚本的应急预案都可以使用告警自愈机制来快速驱动。夜莺开源项目从 v7 版本开始内置了告警自愈模块&#xf…

blender导出gltf模型混乱

最近用户给了几个blender文件,在blender打开是这样的: 我导出成gltf候,在本地打开时,底部发生了改变: 可以看出来,底部由原来的类型box变为了两个平面,后来我查了下blender里的属性设置&#xf…

Python | Leetcode Python题解之第75题颜色分类

题目&#xff1a; 题解&#xff1a; class Solution:def sortColors(self, nums: List[int]) -> None:n len(nums)p0, p2 0, n - 1i 0while i < p2:while i < p2 and nums[i] 2:nums[i], nums[p2] nums[p2], nums[i]p2 - 1if nums[i] 0:nums[i], nums[p0] num…

指针与const

指针与const 定义的对象中加上const 关键字&#xff0c; 表达一经初始化就不可修改的特性const 对象必须初始化 指针与constconst char* pc;指向常量的指针pc 初始化可以指向常量字符串&#xff0c; 内容不可以修改&#xff0c;但是指针指向可以修改char* const cp;指向char …

ESD静电问题 | 案例

【转自微信公众号&#xff1a;EMC容冠电磁】

相亲系统功能介绍

相亲系统是一种旨在帮助单身人士寻找合适伴侣的平台&#xff0c;其主要功能通常包括以下几个方面&#xff1a; 实名认证&#xff1a;为了确保双方的权益保障&#xff0c;用户必须进行实名认证后才能使用该系统。这有助于增加系统的安全性和可信度。偏好选择&#xff1a;用户可…

网络安全之ACL

ACL&#xff1a;访问控制列表——控制列表&#xff08;策略列表&#xff09;&#xff0c;是一个控制工具。 功能&#xff1a;&#xff01;、定义感兴趣路由&#xff08;控制层面&#xff09;。2、定义感兴趣流量&#xff08;数据层面&#xff09;。 例如&#xff1a; 假设在该…

数字孪生涉及到的前沿技术:虚拟现实 人工智能 区块链 边缘计算。

数字孪生是各类技术的综合应用&#xff0c;除了咱们常见的传感器、数据采集、清洗、传输、建模、可视化技术外&#xff0c;还有还有一些前沿技术&#xff0c;会让数字孪生更加强大和智能&#xff0c;本文介绍几个。 虚拟现实&#xff08;Virtual Reality&#xff0c;VR&#x…

京东运营大基本功:店铺八大数据分析 | 店铺所有商品API采集接口

数据分析是京东运营的基本功&#xff0c;想要做好京东运营&#xff0c;那么你就一定要掌握数据分析的技能&#xff0c;数据分析我们需要采集大量数据&#xff0c;这时候我们就要京东电商数据采集API接口&#xff0c;今天就重点来给大家讲讲关于数据分析的道与术。 01 一、分析…

抖音小店怎么找达人带货的?分享几个成功率超高的沟通话术!

哈喽~我是电商月月 做抖音小店&#xff0c;特别是无货源的商家想要更多的流量&#xff0c;必定会尝试直播卖货&#xff0c;不会自己直播卖货&#xff0c;就会开通精选联盟&#xff0c;在里面找达人合作 那精选联盟到底是怎样找达人带货的呢&#xff1f; 有的达人打招呼了根本…

五、Redis五种常用数据结构-SET

Redis的Set结构存储的数据和Java中的HashSet类似&#xff0c;都是无序且不重复的。其底层的数据结构有两种&#xff0c;一是当value为整数时&#xff0c;且数据量不大时采用intset来存储。其他情况使用dict字典存储。集合中最多存储232-1(40多亿)个数据。 1、常用命令 sadd k…

游戏行业干货分享 | 游戏行业非技术岗盘点

在游戏行业&#xff0c;除了技术开发岗位外&#xff0c;还有许多非技术岗位对游戏的成功至关重要。以下是一些游戏行业非技术岗位的盘点&#xff0c;以及它们各自的职责和对游戏项目的贡献&#xff1a; 以游戏上线为目的&#xff0c;从游戏研发到游戏发行会有如下岗位配置 这里…

【AIGC】重塑未来的科技巨轮

AIGC&#xff1a;重塑未来的科技巨轮 一、AIGC&#xff1a;从历史走来&#xff0c;向未来进发二、AIGC的三项核心技术三、AIGC的应用与未来 在当今科技飞速发展的时代&#xff0c;AI&#xff08;人工智能&#xff09;已经成为了一个无法忽视的热词。而与其紧密相连的AIGC&#…

等保测评二级有哪些标准

等级保护测评&#xff08;等保测评&#xff09;是中国的一项网络安全标准&#xff0c;旨在评估和确保关键信息基础设施的安全。二级等保测评是适用于一般级别的信息系统&#xff0c;这些系统一旦受损&#xff0c;可能会对社会秩序、公共利益和公民权利造成一定程度的影响。 二级…